
The Book
Version: 2.6

generated on September 25, 2015

The Book (2.6)

This work is licensedunder the ÒAttribution-ShareAlike 3.0 UnportedÓlicense(http://creativecommons.org/
licenses/by-sa/3.0/).

You arefreeto share (to copy,distribute and transmit the work), and to remix (to adaptthe work) under the
following conditions:

¥ Attribution : You must attribute the work in the mannerspecifiedby the author or licensor(but
not in any way that suggests that they endorse you or your use of the work).

¥ ShareAlike : If you alter, transform,or build upon this work, you maydistribute the resultingwork
only under the same,similar or a compatiblelicense.For anyreuseor distribution, you must make
clear to others the license terms of this work.

The information in this book is distributed on an ÒasisÓbasis,without warranty. Although everyprecaution
hasbeentakenin the preparationof this work, neither the author(s)nor SensioLabsshallhaveany liability to
anypersonor entity with respectto anylossor damagecausedor allegedto becauseddirectly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

Symfony and HTTP Fundamentals..4
Symfony versus Flat PHP...14
Installing and Configuring Symfony...27
Create your First Page in Symfony...34
Controller...43
Routing ..55
Creating and Using Templates...71
Configuring Symfony (and Environments)...90
The Bundle System...93
Databases and Doctrine..97
Databases and Propel..118
Testing...119
Validation...135
Forms...148
Security..174
HTTP Cache...188
Translations..205
Service Container..217
Performance...230

PDF brought to you by
generated on September 25, 2015

Contents at a Glance | iii

http://sensiolabs.com

Chapter 1

Symfony and HTTP Fundamentals

Congratulations!By learningabout Symfony,you'rewell on your way towardsbeinga more productive,
well-roundedandpopularwebdeveloper(actually,you'reon your own for the lastpart). Symfonyis built
to get back to basics:to developtools that let you developfasterand build more robust applications,
while stayingout of your way. Symfonyis built on the bestideasfrom many technologies:the tools and
conceptsyou're about to learn representthe efforts of thousandsof people,over many years.In other
words, you're not just learning "Symfony", you're learning the fundamentalsof the web, development
bestpracticesand how to usemanyamazingnewPHPlibraries,insideor independentlyof Symfony.So,
get ready.

True to the Symfonyphilosophy, this chapterbeginsby explaining the fundamentalconceptcommon
to web development:HTTP. Regardlessof your backgroundor preferredprogramming language,this
chapter is amust-read for everyone.

HTTP is Simple
HTTP (Hypertext Transfer Protocol to the geeks)is a text languagethat allows two machines to
communicatewith eachother. That's it! For example,when checking for the latest xkcd1 comic, the
following (approximate) conversation takes place:

1. http://xkcd.com/

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 4

http://sensiolabs.com

Listing 1-1

And while the actual languageusedis a bit more formal, it's still dead-simple.HTTP is the term usedto
describethis simpletext-basedlanguage.No matterhow you developon the web, the goalof your server
is alwaysto understand simple text requests, and return simple text responses.

Symfony is built from the ground up around that reality. Whether you realize it or not, HTTP is
something you use every day. With Symfony, you'll learn how to master it.

Step1: The Client Sends a Request

Everyconversationon the webstartswith a request. The requestis a text messagecreatedby aclient (e.g.
a browser,a smartphoneapp,etc) in a specialformat known asHTTP. The client sendsthat requestto a
server, and then waits for the response.

Take a look at the first part of the interaction (the request) between a browser and the xkcd web server:

In HTTP-speak, this HTTP request would actually look something like this:

1
2
3
4

GET / HTTP/1.1
Host: xkcd.com
Accept: text/html
User-Agent: Mozilla/5.0 (Macintosh)

This simple messagecommunicateseverythingnecessaryabout exactly which resourcethe client is
requesting.The first line of anHTTP requestis the most important andcontainstwo things: the URI and
the HTTP method.

The URI (e.g. / , /contact , etc) is the unique addressor location that identifies the resourcethe client
wants.The HTTP method(e.g.GET) defineswhat you want to dowith the resource.The HTTP methods
are theverbsof the request and define the few common ways that you can act upon the resource:

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 5

http://sensiolabs.com

Listing 1-2

Listing 1-3

GET Retrieve the resource from the server

POST Create a resource on the server

PUT Update the resource on the server

DELETE Delete the resource from the server

With this in mind, you canimaginewhat anHTTP requestmight look like to deleteaspecificblog entry,
for example:

1 DELETE /blog/15 HTTP/1.1

Thereareactuallynine HTTP methods(alsoknown asverbs)definedby the HTTP specification,
but many of them are not widely used or supported. In reality, many modern browsersonly
support POSTand GET in HTML forms. Various others are however supported in
XMLHttpRequests, as well as by Symfony's router.

In addition to the first line, anHTTP requestinvariablycontainsother linesof information calledrequest
headers.The headerscan supply a wide rangeof information suchasthe requestedHost, the response
formats the client accepts(Accept) and the application the client is using to make the request(User-
Agent). Many other headers exist and can be found on Wikipedia'sList of HTTP header fields2 article.

Step 2: The Server Returns a Response

Once a serverhasreceivedthe request,it knows exactlywhich resourcethe client needs(via the URI)
and what the client wants to do with that resource(via the method). For example,in the caseof a GET
request,the serverpreparesthe resourceandreturnsit in anHTTP response.Considerthe responsefrom
the xkcd web server:

Translated into HTTP, the response sent back to the browser will look something like this:

1
2
3
4
5
6

HTTP/1.1 200 OK
Date: Sat, 02 Apr 2011 21:05:05 GMT
Server: lighttpd/1.4.19
Content-Type: text/html

<html>

2. http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 6

http://sensiolabs.com

Listing 1-4

7
8

<!-- ... HTML for the xkcd comic -->
</html>

The HTTP responsecontainsthe requestedresource(the HTML content in this case),aswell asother
information about the response.The first line is especiallyimportant and containsthe HTTP response
statuscode(200 in this case).The statuscodecommunicatesthe overall outcomeof the requestback
to the client. Was the requestsuccessful?Was there an error?Different statuscodesexist that indicate
success,an error, or that the client needsto do something(e.g.redirect to anotherpage).A full list can
be found on Wikipedia'sList of HTTP status codes3 article.

Like the request,an HTTP responsecontainsadditional piecesof information known asHTTP headers.
For example,one important HTTP responseheaderis Content-Type. The body of the sameresource
could bereturnedin multiple different formatslike HTML, XML, or JSONandtheContent-Type header
usesInternet Media Types like text/ html to tell the client which format is being returned. A list of
common media types can be found on Wikipedia'sList of common media types4 article.

Many other headersexist,someof which areverypowerful. For example,certainheaderscanbeusedto
create a powerful caching system.

Requests, Responses and Web Development

This request-responseconversationis the fundamentalprocessthat drivesall communicationon theweb.
And as important and powerful as this process is, it's inescapably simple.

The most important fact is this: regardlessof the languageyou use, the type of application you build
(web, mobile, JSONAPI) or the developmentphilosophy you follow, the end goal of an application is
always to understand each request and create and return the appropriate response.

Symfony is architected to match this reality.

To learnmore about the HTTP specification,readthe original HTTP 1.1 RFC5 or the HTTP Bis6,
which is an activeeffort to clarify the original specification.A greattool to checkboth the request
and response headers while browsing is theLive HTTP Headers7 extension for Firefox.

Requests and Responses in PHP
So how do you interact with the "request"and createa "response"when using PHP?In reality, PHP
abstracts you a bit from the whole process:

1
2
3
4
5
6

$uri = $_SERVER['REQUEST_URI'];
$foo = $_GET['foo'];

header('Content-Type: text/html');
echo 'The URI requested is: ' . $uri ;
echo 'The value of the "foo" parameter is: ' . $foo;

As strangeasit sounds,this small application is in fact taking information from the HTTP requestand
using it to createan HTTP response.Insteadof parsingthe raw HTTP requestmessage,PHPprepares
superglobalvariablessuch as $_SERVERand $_GETthat contain all the information from the request.

3. http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

4. http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

5. http://www.w3.org/Protocols/rfc2616/rfc2616.html

6. http://datatracker.ietf.org/wg/httpbis/

7. https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 7

http://sensiolabs.com

Listing 1-5

Listing 1-6

Similarly, insteadof returning the HTTP-formatted text response,you canusethe header() function to
createresponseheadersand simply print out the actual content that will be the content portion of the
response message. PHP will create a true HTTP response and return it to the client:

1
2
3
4
5
6
7

HTTP/1.1 200 OK
Date: Sat, 03 Apr 2011 02:14:33 GMT
Server: Apache/2.2.17 (Unix)
Content-Type: text/html

The URI requested is: /testing?foo=symfony
The value of the "foo" parameter is: symfony

Requests and Responses in Symfony
Symfonyprovides an alternative to the raw PHP approachvia two classesthat allow you to interact
with the HTTP requestand responsein an easierway. The Request8 classis a simple object-oriented
representationof the HTTP requestmessage.With it, you have all the request information at your
fingertips:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

use Symfony\Component\HttpFoundation\Request;

$request = Request:: createFromGlobals();

// the URI being requested (e.g. /about) minus any query parameters
$request->getPathInfo ();

// retrieve GET and POST variables respectively
$request->query->get('foo');
$request->request ->get('bar' , 'default value if bar does not exist');

// retrieve SERVER variables
$request->server ->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files ->get('foo');

// retrieve a COOKIE value
$request->cookies->get('PHPSESSID');

// retrieve an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content_type');

$request->getMethod(); // GET, POST, PUT, DELETE, HEAD
$request->getLanguages(); // an array of languages the client accepts

Asabonus,the Requestclassdoesa lot of work in the backgroundthat you'll neverneedto worry about.
For example,the isSecure() methodchecksthe threedifferent valuesin PHPthat canindicatewhether
or not the user is connecting via a secured connection (i.e. HTTPS).

8. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 8

http://sensiolabs.com

Listing 1-7

ParameterBags and Request Attributes

As seenabove,the $_GETand $_POSTvariablesare accessiblevia the public query and request
propertiesrespectively.Eachof theseobjectsis a ParameterBag9 object, which hasmethodslike
get() 10, has() 11, all() 12 and more. In fact, everypublic property usedin the previousexampleis
some instance of the ParameterBag.

The Requestclassalsohasa public attributes property, which holds specialdatarelatedto how
the application works internally. For the SymfonyFramework, the attributes holds the values
returnedby the matchedroute, like _controller , id (if you havean {id} wildcard), and eventhe
nameof the matchedroute (_route). The attributes property existsentirely to bea placewhere
you can prepare and store context-specific information about the request.

Symfonyalso providesa Responseclass:a simple PHP representationof an HTTP responsemessage.
This allows your application to usean object-orientedinterfaceto construct the responsethat needsto
be returned to the client:

1
2
3
4
5
6
7
8
9

10

use Symfony\Component\HttpFoundation\Response;

$response = new Response();

$response->setContent ('<html><body><h1>Hello world!</h1></body></html>');
$response->setStatusCode(Response:: HTTP_OK);
$response->headers->set ('Content-Type' , 'text/html');

// prints the HTTP headers followed by the content
$response->send();

If Symfonyofferednothing else,you would alreadyhavea toolkit for easilyaccessingrequestinformation
and an object-orientedinterfacefor creatingthe response.Evenasyou learnthe manypowerful features
in Symfony,keepin mind that the goalof your application is alwaysto interpreta requestandcreatethe
appropriate response based on your application logic.

The Requestand Responseclassesare part of a standalonecomponent included with Symfony
calledHttpFoundation. This componentcanbe usedentirely independentlyof Symfonyand also
provides classes for handling sessions and file uploads.

The Journey from the Request to the Response
Like HTTP itself, the Request and Responseobjectsare pretty simple. The hard part of building an
application is writing what comesin between.In other words, the real work comesin writing the code
that interprets the request information and creates the response.

Your application probably doesmany things, like sendingemails,handling form submissions,saving
things to a database,renderingHTML pagesandprotectingcontentwith security.How canyou manage
all of this and still keep your code organized and maintainable?

Symfony was created to solve these problems so that you don't have to.

9. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/ParameterBag.html

10. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/ParameterBag.html#get()

11. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/ParameterBag.html#has()

12. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/ParameterBag.html#all()

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 9

http://sensiolabs.com

Listing 1-8

Listing 1-9

The Front Controller

Traditionally, applications were built so that each "page" of a site was its own physical file:

1
2
3

index.php
contact.php
blog.php

There are severalproblems with this approach, including the inflexibility of the URLs (what if you
wanted to changeblog.php to news.phpwithout breakingall of your links?)and the fact that eachfile
mustmanually include somesetof corefilesso that security,databaseconnectionsand the "look" of the
site can remain consistent.

A much better solution is to usea front controller: a singlePHPfile that handleseveryrequestcoming
into your application. For example:

/index.php executesindex.php

/index.php/contact executesindex.php

/index.php/blog executesindex.php

Using Apache'smod_rewrite (or equivalent with other web servers),the URLs can easily be
cleaned up to be just/ , /contact and /blog .

Now, everyrequestis handledexactlythe sameway. Insteadof individual URLsexecutingdifferent PHP
files, the front controller is alwaysexecuted,and the routing of different URLsto different partsof your
application is doneinternally. This solvesboth problemswith the original approach.Almost all modern
web apps do this - including apps like WordPress.

Stay Organized

Insideyour front controller, you haveto figureout which codeshouldbeexecutedandwhat the content
to return shouldbe.To figure this out, you'll needto checkthe incomingURI andexecutedifferent parts
of your code depending on that value. This can get ugly quickly:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// index.php
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request:: createFromGlobals();
$path = $request->getPathInfo (); // the URI path being requested

if (in_array ($path, array ('' , '/'))) {
$response = new Response('Welcome to the homepage.');

} elseif ('/contact' === $path) {
$response = new Response('Contact us');

} else {
$response = new Response('Page not found.' , Response:: HTTP_NOT_FOUND);

}
$response->send();

Solving this problem can be difficult. Fortunately it'sexactlywhat Symfony is designed to do.

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 10

http://sensiolabs.com

Listing 1-10

Listing 1-11

The Symfony Application Flow

When you let Symfonyhandleeachrequest,life is much easier.Symfonyfollows the samesimplepattern
for every request:

Incomingrequestsareinterpretedby the routing andpassedto controller functions that return Response
objects.

Each"page"of your site is defined in a routing configuration file that mapsdifferent URLs to different
PHPfunctions.The job of eachPHPfunction, calleda controller, is to useinformation from the request-
alongwith manyother tools Symfonymakesavailable- to createand return a Responseobject. In other
words, the controller is whereyour code goes: it's where you interpret the request and create a response.

It's that easy! To review:

¥ Each request executes a front controller file;
¥ The routing systemdetermineswhich PHPfunction shouldbeexecutedbasedon information

from the request and routing configuration you've created;
¥ The correct PHP function is executed,where your codecreatesand returns the appropriate

Responseobject.

A Symfony Request in Action

Without diving into too much detail, hereis this processin action. Supposeyou want to adda /contact
page to your Symfony application. First, start by adding an entry for /contact to your routing
configuration file:

1
2
3
4

app/config/routing.yml
contact :

path: /contact
defaults : { _controller : AppBundle: Main: contact }

When someonevisits the /contact page,this route is matched,and the specifiedcontroller is executed.
Asyou'll learnin the routingchapter, the AppBundle:Main:contact string is ashort syntaxthat points to
a specific PHP methodcontactAction inside a class calledMainController :

1
2
3
4
5
6
7

// src/AppBundle/Controller/MainController.php
namespaceAppBundle\Controller ;

use Symfony\Component\HttpFoundation\Response;

class MainController
{

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 11

http://sensiolabs.com

8
9

10
11
12

public function contactAction ()
{

return new Response('<h1>Contact us!</h1>');
}

}

In this very simple example, the controller simply createsa Response13 object with the HTML
<h1>Contact us!</h1>. In the controller chapter, you'll learn how a controller can render templates,
allowing your "presentation"code (i.e. anything that actually writes out HTML) to live in a separate
template file. This frees up the controller to worry only about the hard stuff: interacting with the
database, handling submitted data, or sending email messages.

Symfony: Build your App, not your Tools
You now know that the goalof any app is to interpret eachincoming requestand createan appropriate
response.As an application grows, it becomesmore difficult to keep your code organized and
maintainable.Invariably, the samecomplextaskskeepcomingup overand overagain:persistingthings
to the database,renderingand reusingtemplates,handling form submissions,sendingemails,validating
user input and handling security.

The goodnewsis that noneof theseproblemsis unique.Symfonyprovidesa frameworkfull of tools that
allow you to build your application, not your tools. With Symfony,nothing is imposedon you: you're
free to use the full Symfony Framework, or just one piece of Symfony all by itself.

Standalone Tools: The SymfonyComponents

Sowhat is Symfony?First, Symfonyis a collection of over twenty independentlibrariesthat canbeused
inside any PHP project. Theselibraries, called the SymfonyComponents, contain somethinguseful for
almost any situation, regardless of how your project is developed. To name a few:
HttpFoundation

Contains the Requestand Responseclasses,aswell asother classesfor handling sessionsand file
uploads.

Routing
Powerful and fast routing systemthat allows you to map a specificURI (e.g. /contact) to some
information about how that request should be handled (e.g. execute the contactAction()
method).

Form
A full-featured and flexible framework for creating forms and handling form submissions.

Validator 14

A systemfor creating rules about data and then validating whether or not user-submitteddata
follows those rules.

Templating
A toolkit for renderingtemplates,handling templateinheritance(i.e. a templateis decoratedwith a
layout) and performing other common template tasks.

Security
A powerful library for handling all types of security inside an application.

13. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Response.html

14. https://github.com/symfony/Validatorhttps://github.com/symfony/Validator

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 12

http://sensiolabs.com

Translation
A framework for translating strings in your application.

Eachone of thesecomponentsis decoupledand canbe usedin any PHPproject, regardlessof whether
or not you usethe SymfonyFramework.Everypart is made to be usedif neededand replacedwhen
necessary.

The Full Solution: The SymfonyFramework

Sothen, what is the SymfonyFramework?The SymfonyFrameworkis a PHPlibrary that accomplishes
two distinct tasks:

1. Providesa selectionof components(i.e. the SymfonyComponents)and third-party libraries
(e.g.Swift Mailer15 for sending emails);

2. Provides sensible configuration and a "glue" library that ties all of these pieces together.

The goal of the framework is to integrate many independent tools in order to provide a consistent
experiencefor the developer.Eventhe framework itself is a Symfonybundle (i.e. a plugin) that can be
configured or replaced entirely.

Symfonyprovidesa powerful setof tools for rapidly developingweb applicationswithout imposing on
your application. Normal userscan quickly start developmentby using a Symfonydistribution, which
provides a project skeleton with sensible defaults. For more advanced users, the sky is the limit.

15. http://swiftmailer.org/

PDF brought to you by
generated on September 25, 2015

Chapter 1: Symfony and HTTP Fundamentals | 13

http://sensiolabs.com

Listing 2-1

Chapter 2

Symfony versus Flat PHP

Why is Symfony better than just opening up a file and writing flat PHP?

If you'veneveruseda PHPframework, aren't familiar with the MVC philosophy, or just wonder what
all the hypeis around Symfony,this chapteris for you. Insteadof tellingyou that Symfonyallowsyou to
develop faster and better software than with flat PHP, you'll see for yourself.

In this chapter,you'll write a simpleapplication in flat PHP,and then refactor it to be more organized.
You'll travel through time, seeingthe decisionsbehind why web developmenthasevolvedover the past
several years to where it is now.

By the end,you'll seehow Symfonycanrescueyou from mundanetasksand let you takebackcontrol of
your code.

A Simple Blog in Flat PHP
In this chapter,you'll build the token blog applicationusingonly flat PHP.To begin,createa singlepage
that displaysblog entriesthat havebeenpersistedto the database.Writing in flat PHPis quick anddirty:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

<?php
// index.php
$link = mysql_connect('localhost' , 'myuser' , 'mypassword');
mysql_select_db('blog_db' , $link);

$result = mysql_query('SELECT id, title FROM post' , $link);
?>

<!DOCTYPE html>
<html>

<head>
<title> List of Posts </title>

</head>
<body>

<h1>List of Posts </h1>

<?php while ($row = mysql_fetch_assoc($result)) : ?>

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 14

http://sensiolabs.com

Listing 2-2

Listing 2-3

18
19
20
21
22
23
24
25
26
27
28
29
30

<a href= "/show.php?id= <?php echo $row['id'] ?>" >

<?php echo $row['title'] ?>

<?php endwhile ?>

</body>

</html>

<?php
mysql_close($link);
?>

That'squick to write, fast to execute,and, asyour app grows,impossibleto maintain. Thereareseveral
problems that need to be addressed:

¥ No error-checking : What if the connection to the database fails?
¥ Poor organization : If the application grows, this single file will become increasingly

unmaintainable.Where should you put code to handle a form submission?How can you
validate data? Where should code go for sending emails?

¥ Difficult to reusecode: Sinceeverythingis in onefile, there'sno way to reuseanypart of the
application for other "pages" of the blog.

Another problem not mentionedhereis the fact that the databaseis tied to MySQL. Though not
coveredhere,Symfonyfully integratesDoctrine1, a library dedicatedto databaseabstractionand
mapping.

Isolating the Presentation

The codecan immediatelygain from separatingthe application "logic" from the codethat preparesthe
HTML "presentation":

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

<?php
// index.php
$link = mysql_connect('localhost' , 'myuser' , 'mypassword');
mysql_select_db('blog_db' , $link);

$result = mysql_query('SELECT id, title FROM post' , $link);

$posts = array ();
while ($row = mysql_fetch_assoc($result)) {

$posts[] = $row;
}

mysql_close($link);

// include the HTML presentation code
require 'templates/list.php' ;

TheHTML codeis now storedin aseparatefile (templates/ list.php), which is primarily anHTML file
that uses a template-like PHP syntax:

1. http://www.doctrine-project.org

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 15

http://sensiolabs.com

Listing 2-4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

<!DOCTYPE html>
<html>

<head>
<title> List of Posts </title>

</head>
<body>

<h1>List of Posts </h1>

<?php foreach ($posts as $post) : ?>

<a href= "/read?id= <?php echo $post['id'] ?>" >
<?php echo $post['title'] ?>

<?php endforeach ?>

</body>

</html>

By convention, the file that containsall the application logic - index.php - is known asa "controller".
The term controlleris a word you'll heara lot, regardlessof the languageor frameworkyou use.It refers
simply to the area ofyour code that processes user input and prepares the response.

In this case,the controller preparesdata from the databaseand then includesa templateto presentthat
data.With the controller isolated,you could easilychangejust the templatefile if you neededto render
the blog entries in some other format (e.g.list.json.php for JSON format).

Isolating the Application (Domain) Logic

Sofar the applicationcontainsonly onepage.But what if a secondpageneededto usethe samedatabase
connection,or eventhe samearrayof blog posts?Refactorthe codeso that the corebehaviorand data-
access functions of the application are isolated in a new file calledmodel.php:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<?php
// model.php
function open_database_connection()
{

$link = mysql_connect('localhost' , 'myuser' , 'mypassword');
mysql_select_db('blog_db' , $link);

return $link ;
}

function close_database_connection($link)
{

mysql_close($link);
}

function get_all_posts ()
{

$link = open_database_connection();

$result = mysql_query('SELECT id, title FROM post' , $link);
$posts = array ();
while ($row = mysql_fetch_assoc($result)) {

$posts[] = $row;
}

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 16

http://sensiolabs.com

Listing 2-5

Listing 2-6

Listing 2-7

25
26
27
28

close_database_connection($link);

return $posts;
}

The filenamemodel.phpis usedbecausethe logic anddataaccessof an application is traditionally
known asthe "model" layer.In a well-organizedapplication, the majority of the coderepresenting
your "businesslogic" should live in the model (asopposedto living in a controller). And unlike in
this example,only aportion (or none)of themodelisactuallyconcernedwith accessingadatabase.

The controller (index.php) is now very simple:

1
2
3
4
5
6

<?php
require_once 'model.php' ;

$posts = get_all_posts ();

require 'templates/list.php' ;

Now, the soletaskof the controller is to getdatafrom the model layerof the application(the model)and
to call a templateto renderthat data.This is a verysimpleexampleof the model-view-controllerpattern.

Isolating the Layout

At this point, the application hasbeenrefactoredinto three distinct piecesoffering variousadvantages
and the opportunity to reuse almost everything on different pages.

The only part of the codethat can't be reusedis the pagelayout. Fix that by creatinga new layout.php
file:

1
2
3
4
5
6
7
8
9

10

<!-- templates/layout.php -->
<!DOCTYPE html>
<html>

<head>
<title> <?php echo $title ?></title>

</head>
<body>

<?php echo $content ?>
</body>

</html>

The template (templates/list.php) can now be simplified to "extend" the layout:

1
2
3
4
5
6
7
8
9

10
11

<?php $title = 'List of Posts' ?>

<?php ob_start () ?>
<h1>List of Posts </h1>

<?php foreach ($posts as $post) : ?>

<a href= "/read?id= <?php echo $post['id'] ?>" >
<?php echo $post['title'] ?>

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 17

http://sensiolabs.com

Listing 2-8

Listing 2-9

Listing 2-10

12
13
14
15
16

<?php endforeach ?>

<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

You now havea setupthat will allow you to reusethe layout. Unfortunately, to accomplishthis, you're
forced to usea few ugly PHPfunctions (ob_start() , ob_get_clean()) in the template.Symfonyuses
a Templating component that allows this to be accomplishedcleanlyand easily.You'll seeit in action
shortly.

Adding a Blog "show" Page
The blog "list" pagehasnow beenrefactoredsothat the codeis better-organizedand reusable.To prove
it, add a blog "show" page, which displays an individual blog post identified by anid query parameter.

To begin,createa new function in the model.phpfile that retrievesan individual blog result basedon a
given id:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// model.php
function get_post_by_id ($id)
{

$link = open_database_connection();

$id = intval ($id);
$query = 'SELECT created_at, title, body FROM post WHERE id = ' . $id ;
$result = mysql_query($query);
$row = mysql_fetch_assoc($result);

close_database_connection($link);

return $row;
}

Next, create a new file calledshow.php- the controller for this new page:

1
2
3
4
5
6

<?php
require_once 'model.php' ;

$post = get_post_by_id ($_GET['id']);

require 'templates/show.php' ;

Finally, create the new template file -templates/show.php - to render the individual blog post:

1
2
3
4
5
6
7
8
9

10

<?php $title = $post['title'] ?>

<?php ob_start () ?>
<h1><?php echo $post['title'] ?></h1>

<div class= "date" ><?php echo $post['created_at'] ?></div>
<div class= "body">

<?php echo $post['body'] ?>
</div>

<?php $content = ob_get_clean() ?>

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 18

http://sensiolabs.com

Listing 2-11

Listing 2-12

11
12 <?php include 'layout.php' ?>

Creating the secondpageis now very easyand no code is duplicated. Still, this pageintroduceseven
more lingeringproblemsthat a frameworkcansolvefor you. For example,a missingor invalid id query
parameterwill causethe pageto crash.It would be better if this causeda 404 pageto be rendered,but
this can't reallybedoneeasilyyet. Worse,had you forgotten to cleanthe id parametervia the intval()
function, your entire database would be at risk for an SQL injection attack.

Another major problem is that eachindividual controller file must include the model.php file. What if
eachcontroller file suddenlyneededto include an additional file or perform someother global task (e.g.
enforcesecurity)?Asit standsnow, that codewould needto beaddedto everycontroller file. If you forget
to include something in one file, hopefully it doesn't relate to security...

A "Front Controller" to the Rescue
The solution is to usea front controller: a singlePHPfile through which all requestsareprocessed.With
a front controller, the URIs for the application change slightly, but start to become more flexible:

1
2
3
4
5
6
7

Without a front controller
/index.php => Blog post list page (index.php executed)
/show.php => Blog post show page (show.php executed)

With index.php as the front controller
/index.php => Blog post list page (index.php executed)
/index.php/show => Blog post show page (index.php executed)

The index.php portion of the URI canberemovedif usingApacherewrite rules(or equivalent).In
that case, the resulting URI of the blog show page would be simply/show.

When using a front controller, a single PHP file (index.php in this case)renderseveryrequest.For
the blog post show page, /index.php/ showwill actually executethe index.php file, which is now
responsiblefor routing requestsinternally basedon the full URI. Asyou'll see,a front controller is a very
powerful tool.

Creating the Front Controller

You're about to take a big step with the application. With one file handling all requests,you can
centralize things such as security handling, configuration loading, and routing. In this application,
index.php must now besmartenoughto renderthe blog post list pageor the blog postshowpagebased
on the requested URI:

1
2
3
4
5
6
7
8
9

<?php
// index.php

// load and initialize any global libraries
require_once 'model.php' ;
require_once 'controllers.php' ;

// route the request internally
$uri = parse_url ($_SERVER['REQUEST_URI'], PHP_URL_PATH);

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 19

http://sensiolabs.com

Listing 2-13

Listing 2-14

10
11
12
13
14
15
16
17

if ('/index.php' == $uri) {
list_action ();

} elseif ('/index.php/show' == $uri && isset ($_GET['id'])) {
show_action($_GET['id']);

} else {
header('Status: 404 Not Found');
echo '<html><body><h1>Page Not Found</h1></body></html>';

}

For organization,both controllers(formerly index.php and show.php) arenow PHPfunctions and each
has been moved into a separate file,controllers.php :

1
2
3
4
5
6
7
8
9

10
11

function list_action ()
{

$posts = get_all_posts ();
require 'templates/list.php' ;

}

function show_action($id)
{

$post = get_post_by_id ($id);
require 'templates/show.php' ;

}

As a front controller, index.php has taken on an entirely new role, one that includes loading the
core libraries and routing the application so that one of the two controllers (the list_action() and
show_action() functions) is called.In reality, the front controller is beginningto look and act a lot like
Symfony's mechanism for handling and routing requests.

Anotheradvantageof a front controller is flexibleURLs.Notice that theURL to theblogpostshow
pagecould be changedfrom /show to /read by changingcode in only one location. Before,an
entire file needed to be renamed. In Symfony, URLs are even more flexible.

By now, the application hasevolvedfrom a singlePHPfile into a structure that is organizedand allows
for code reuse.You should be happier, but far from satisfied.For example, the "routing" systemis
fickle, and wouldn't recognizethat the list page(/index.php) should be accessiblealsovia / (if Apache
rewrite ruleswereadded).Also, insteadof developingthe blog, a lot of time is beingspentworking on
the "architecture"of the code(e.g. routing, calling controllers, templates,etc.). More time will needto
be spent to handle form submissions,input validation, logging and security.Why should you haveto
reinvent solutions to all these routine problems?

Add a Touch of Symfony

Symfonyto the rescue.Beforeactually using Symfony,you needto download it. This can be done by
using Composer,which takes care of downloading the correct version and all its dependenciesand
providesan autoloader.An autoloaderis a tool that makesit possibleto start usingPHPclasseswithout
explicitly including the file containing the class.

In your root directory, create acomposer.json file with the following content:

1
2
3
4

{
"require" : {

"symfony/symfony": "2.6.*"
},

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 20

http://sensiolabs.com

Listing 2-15

Listing 2-16

Listing 2-17

5
6
7
8

"autoload" : {
"files" : ["model.php" , "controllers.php"]

}
}

Next, downloadComposer2 and then run the following command,which will download Symfonyinto a
vendor/ directory:

1 $ composer install

Besidedownloadingyour dependencies,Composergeneratesa vendor/ autoload.php file, which takes
care of autoloading for all the files in the SymfonyFramework as well as the files mentioned in the
autoload section of yourcomposer.json.

Core to Symfony'sphilosophy is the ideathat an application'smain job is to interpret eachrequestand
return a response.To this end, Symfonyprovidesboth a Request3 and a Response4 class.Theseclasses
are object-orientedrepresentationsof the raw HTTP requestbeing processedand the HTTP response
being returned. Use them to improve the blog:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

<?php
// index.php
require_once 'vendor/autoload.php' ;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request:: createFromGlobals();

$uri = $request->getPathInfo ();
if ('/' == $uri) {

$response = list_action ();
} elseif ('/show' == $uri && $request->query->has('id')) {

$response = show_action($request->query->get('id'));
} else {

$html = '<html><body><h1>Page Not Found</h1></body></html>';
$response = new Response($html, Response:: HTTP_NOT_FOUND);

}

// echo the headers and send the response
$response->send();

The controllersarenow responsiblefor returning a Responseobject. To makethis easier,you can add
a new render_template() function, which, incidentally, actsquite a bit like the Symfonytemplating
engine:

1
2
3
4
5
6
7

// controllers.php
use Symfony\Component\HttpFoundation\Response;

function list_action ()
{

$posts = get_all_posts ();
$html = render_template ('templates/list.php' , array ('posts' => $posts));

2. https://getcomposer.org/download/

3. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html

4. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Response.html

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 21

http://sensiolabs.com

Listing 2-18

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

return new Response($html);
}

function show_action($id)
{

$post = get_post_by_id ($id);
$html = render_template ('templates/show.php' , array ('post' => $post));

return new Response($html);
}

// helper function to render templates
function render_template ($path, array $args)
{

extract ($args);
ob_start ();
require $path;
$html = ob_get_clean();

return $html;
}

By bringing in a small part of Symfony, the application is more flexible and reliable. The Request
provides a dependable way to access information about the HTTP request. Specifically, the
getPathInfo() method returns a cleanedURI (alwaysreturning /show and never/index.php/ show).
So,evenif the usergoesto /index.php/ show, the application is intelligent enoughto route the request
through show_action() .

The Responseobject givesflexibility when constructing the HTTP response,allowing HTTP headers
and content to beaddedvia an object-orientedinterface.And while the responsesin this applicationare
simple, this flexibility will pay dividends as your application grows.

The Sample Application in Symfony

The blog hascomea long way, but it still containsa lot of code for such a simple application. Along
the way, you'vemadea simplerouting systemand a method usingob_start() and ob_get_clean() to
render templates.If, for somereason,you neededto continue building this "framework" from scratch,
you could at leastuseSymfony'sstandaloneRouting5 and Templating6 components,which alreadysolve
these problems.

Insteadof re-solvingcommonproblems,you canlet Symfonytakecareof them for you. Here'sthe same
sample application, now built in Symfony:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Controller/BlogController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

class BlogController extends Controller
{

public function listAction ()
{

$posts = $this ->get('doctrine')

5. https://github.com/symfony/Routing

6. https://github.com/symfony/Templating

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 22

http://sensiolabs.com

Listing 2-19

Listing 2-20

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

->getManager()
->createQuery('SELECT p FROM AcmeBlogBundle:Post p')
->execute();

return $this ->render('Blog/list.html.php' , array ('posts' => $posts));
}

public function showAction($id)
{

$post = $this ->get('doctrine')
->getManager()
->getRepository ('AppBundle:Post')
->find ($id);

if (! $post) {
// cause the 404 page not found to be displayed
throw $this ->createNotFoundException();

}

return $this ->render('Blog/show.html.php' , array ('post' => $post));
}

}

The two controllers are still lightweight. Eachusesthe Doctrine ORM library to retrieveobjectsfrom
the databaseand the Templatingcomponentto rendera templateand return a Responseobject.The list
template is now quite a bit simpler:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

<!-- app/Resources/views/Blog/list.html.php -->
<?php $view->extend('layout.html.php') ?>

<?php $view['slots'] ->set ('title' , 'List of Posts') ?>

<h1>List of Posts </h1>

<?php foreach ($posts as $post) : ?>

<a href= " <?php echo $view['router'] ->generate(
'blog_show' ,
array ('id' => $post->getId ())

) ?>" >
<?php echo $post->getTitle () ?>

<?php endforeach ?>

The layout is nearly identical:

1
2
3
4
5
6
7
8
9

<!-- app/Resources/views/layout.html.php -->
<!DOCTYPE html>
<html>

<head>
<title> <?php echo $view['slots'] ->output (

'title' ,
'Default title'

) ?></title>
</head>

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 23

http://sensiolabs.com

Listing 2-21

Listing 2-22

10
11
12
13

<body>
<?php echo $view['slots'] ->output ('_content') ?>

</body>
</html>

The show template is left as an exercise, as it should be trivial to create based on the list template.

When Symfony'sengine(calledthe Kernel) bootsup, it needsa map so that it knows which controllers
to executebasedon the requestinformation. A routing configurationmapprovidesthis information in a
readable format:

1
2
3
4
5
6
7
8

app/config/routing.yml
blog_list :

path: /blog
defaults : { _controller : AppBundle: Blog: list }

blog_show:
path: /blog/show/{id}
defaults : { _controller : AppBundle: Blog: show }

Now that Symfonyis handling all the mundanetasks,the front controller is deadsimple. And sinceit
doesso little, you'll neverhaveto touch it onceit's created(and if you usea Symfonydistribution7, you
won't even need to create it!):

1
2
3
4
5
6
7
8

// web/app.php
require_once __DIR__. '/../app/bootstrap.php' ;
require_once __DIR__. '/../app/AppKernel.php' ;

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod' , false);
$kernel ->handle(Request:: createFromGlobals()) ->send();

The front controller'sonly job is to initialize Symfony'sengine(Kernel) and passit a Requestobject to
handle.Symfony'scorethen usesthe routing map to determinewhich controller to call. Justlike before,
the controller method is responsiblefor returning the final Responseobject.There'sreallynot much else
to it.

For a visual representation of how Symfony handles each request, see therequest flow diagram.

Where Symfony Delivers

In the upcoming chapters, you'll learn more about how each piece of Symfony works and the
recommendedorganizationof a project. For now, havea look at how migrating the blog from flat PHP
to Symfony has improved life:

¥ Your application now hasclear and consistently organized code (though Symfonydoesn't
forceyou into this). This promotesreusability andallowsfor newdevelopersto beproductive
in your project more quickly;

¥ 100% of the codeyou write is for your application. You don't need to develop or maintain
low-level utilities such as autoloading,routing, or renderingcontrollers;

7. https://github.com/symfony/symfony-standard

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 24

/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/book/http_fundamentals.html#request-flow-figure
/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/book/http_fundamentals.html#request-flow-figure
http://sensiolabs.com

Listing 2-23

Listing 2-24

¥ Symfony gives you access to open source tools such as Doctrine and the Templating,
Security, Form, Validation and Translation components (to name a few);

¥ The application now enjoysfully-flexible URLs thanks to the Routing component;
¥ Symfony'sHTTP-centric architecture gives you accessto powerful tools such as HTTP

caching powered by Symfony's internal HTTP cache or more powerful tools such as
Varnish8. This is covered in a later chapter all aboutcaching.

And perhapsbestof all, by using Symfony,you now haveaccessto a whole setof high-quality open
source tools developed by the Symfony community ! A good selectionof Symfonycommunity tools
can be found onKnpBundles.com9.

Better Templates
If you chooseto use it, Symfonycomesstandardwith a templating enginecalled Twig10 that makes
templatesfasterto write and easierto read.It meansthat the sampleapplicationcould contain evenless
code! Take, for example, the list template written in Twig:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

{# app/Resources/views/blog/list.html.twig #}
{% extends "layout.html.twig" %}

{% block title %}List of Posts {% endblock %}

{% block body %}
<h1>List of Posts </h1>

{% for post in posts %}

{{ post.title }}

{% endfor %}

{% endblock %}

The correspondinglayout.html.twig template is also easier to write:

1
2
3
4
5
6
7
8
9

10

{# app/Resources/views/layout.html.twig #}
<!DOCTYPE html>
<html>

<head>
<title> {% block title %}Default title {% endblock %}</title>

</head>
<body>

{% block body %}{%endblock %}
</body>

</html>

Twig is well-supportedin Symfony.And while PHPtemplateswill alwaysbesupportedin Symfony,the
manyadvantagesof Twig will continueto bediscussed.For moreinformation, seethe templatingchapter.

8. https://www.varnish-cache.org/

9. http://knpbundles.com/

10. http://twig.sensiolabs.org

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 25

/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/book/http_cache.html
/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/book/http_cache.html
http://sensiolabs.com

Learn more from the Cookbook
¥ How to Use PHP instead of Twig for Templates
¥ How to Define Controllers as Services

PDF brought to you by
generated on September 25, 2015

Chapter 2: Symfony versus Flat PHP | 26

http://sensiolabs.com

Listing 3-1

Listing 3-2

Chapter 3

Installing and Configuring Symfony

Thegoalof this chapteris to getyou up andrunning with aworking applicationbuilt on top of Symfony.
In order to simplify the process of creating new applications, Symfony provides an installer application.

Installing the Symfony Installer
Using the Symfony Installer is the only recommendedway to createnew Symfonyapplications.This
installer is a PHPapplication that hasto be installedin your systemonly onceand then it cancreateany
number of Symfony applications.

The installerrequiresPHP5.4 or higher.If you still usethe legacyPHP5.3 version,you cannotuse
the SymfonyInstaller.Readthe CreatingSymfonyApplicationswithout theInstallersectionto learn
how to proceed.

Depending on your operating system, the installer must be installed in different ways.

Linux and Mac OS X Systems

Open your command console and execute the following commands:

1
2

$ sudo curl -LsS http://symfony.com/installer -o /usr/local/bin/symfony
$ sudo chmod a+x /usr/local/bin/symfony

This will create a globalsymfonycommand in your system.

Windows Systems

Open your command console and execute the following command:

1 c: \> php -r "readfile('http://symfony.com/installer');" > symfony

Then, move the downloadedsymfonyfile to your project's directory and execute it as follows:

PDF brought to you by
generated on September 25, 2015

Chapter 3: Installing and Configuring Symfony | 27

http://sensiolabs.com

Listing 3-3

Listing 3-4

Listing 3-5

Listing 3-6

1
2

c: \> move symfony c:\p rojects
c: \p rojects \> php symfony

Creating the Symfony Application
Once the Symfony Installer is available, create your first Symfony application with thenewcommand:

1
2
3
4
5
6

Linux, Mac OS X
$ symfony new my_project_name

Windows
c: \> cd projects/
c: \p rojects \> php symfony new my_project_name

This commandcreatesa new directory calledmy_project_namethat containsa freshnew project based
on the mostrecentstableSymfonyversionavailable.In addition, the installerchecksif your systemmeets
the technicalrequirementsto executeSymfonyapplications.If not, you'll seethe list of changesneeded
to meet those requirements.

For securityreasons,all Symfonyversionsaredigitally signedbeforedistributing them. If you want
to verify the integrity of any Symfony version, follow the stepsexplained in this post1.

Basing your Project on a Specific Symfony Version

In caseyour project needsto be basedon a specificSymfonyversion,usethe optional secondargument
of thenewcommand:

1
2
3
4
5
6
7
8
9

10
11

use the most recent version in any Symfony branch
$ symfony new my_project_name 2.3
$ symfony new my_project_name 2.5
$ symfony new my_project_name 2.6

use a specific Symfony version
$ symfony new my_project_name 2.3.26
$ symfony new my_project_name 2.6.5

use the most recent LTS (Long Term Support) version
$ symfony new my_project_name lts

If you want your project to bebasedon the latestSymfonyLTSversion, passlts asthe secondargument
of thenewcommand:

1
2
3
4
5

Linux, Mac OS X
$ symfony new my_project_name lts

Windows
c: \p rojects \> php symfony new my_project_name lts

1. http://fabien.potencier.org/article/73/signing-project-releases

PDF brought to you by
generated on September 25, 2015

Chapter 3: Installing and Configuring Symfony | 28

http://sensiolabs.com

Listing 3-7

Listing 3-8

Listing 3-9

Readthe SymfonyReleaseprocessto betterunderstandwhy thereareseveralSymfonyversionsandwhich
one to use for your projects.

Creating Symfony Applications without the Installer
If you still use PHP 5.3, or if you can't executethe installer for any reason,you can createSymfony
applications using the alternative installation method based onComposer2.

Composeris the dependencymanagerused by modern PHP applications and it can also be used to
createnewapplicationsbasedon the SymfonyFramework.If you don't haveit installedglobally,start by
reading the next section.

Installing Composer Globally

Start with installing Composer globally.

Creating a Symfony Application with Composer

OnceComposeris installedon your computer,executethe create-project commandto createa new
Symfony application based on its latest stable version:

1 $ composer create-project symfony/framework-standard-edition my_project_name

If you needto baseyour application on a specificSymfonyversion,provide that versionasthe second
argument of thecreate-project command:

1 $ composer create-project symfony/framework-standard-edition my_project_name "2.3.*"

If your Internet connectionis slow, you may think that Composeris not doing anything. If that's
your case,add the -vvv flag to the previouscommandto displaya detailedoutput of everything
that Composer is doing.

Running the Symfony Application
Symfonyleveragesthe internal web serverprovided by PHPto run applicationswhile developingthem.
Therefore,running aSymfonyapplicationis amatterof browsingthe projectdirectoryandexecutingthis
command:

1
2

$ cd my_project_name/
$ php app/console server:run

Then, open your browser and accessthe http://localhost:8000/ app/example URL to see the
Welcome page of Symfony:

2. https://getcomposer.org/

PDF brought to you by
generated on September 25, 2015

Chapter 3: Installing and Configuring Symfony | 29

http://sensiolabs.com

Listing 3-10

Listing 3-11

Insteadof the WelcomePage,you may seea blank pageor an error page.This is causedby a directory
permissionmisconfiguration.Thereareseveralpossiblesolutionsdependingon your operatingsystem.
All of them are explained in theSetting up Permissionssection.

PHP'sinternal webserveris availablein PHP5.4 or higherversions.If you still usethe legacyPHP
5.3 version, you'll have to configure avirtual hostin your web server.

The server:run commandis only suitablewhile developingthe application. In order to run Symfony
applications on production servers,you'll have to configure your Apache3 or Nginx4 web serveras
explained inConfiguring a Web Server.

When you are finished working on your Symfony application, you can stop the server with the
server:stop command:

1 $ php app/console server:stop

Checking Symfony Application Configuration and Setup
Symfonyapplicationscomewith a visualserverconfigurationtesterto showif your environmentis ready
to use Symfony. Access the following URL to check your configuration:

1 http://localhost:8000/config.php

If there are any issues, correct them now before moving on.

3. http://httpd.apache.org/docs/current/mod/core.html#documentroot

4. http://wiki.nginx.org/Symfony

PDF brought to you by
generated on September 25, 2015

Chapter 3: Installing and Configuring Symfony | 30

http://sensiolabs.com

Listing 3-12

Listing 3-13

Listing 3-14

Setting up Permissions

One commonissuewhen installing Symfonyis that the app/cacheand app/logs directoriesmust
be writable both by the web serverand the commandline user.On a UNIX system,if your web
server user is different from your command line user, you can try one of the following solutions.

1. Use the same user for the CLI and the web server

In developmentenvironments,it is a commonpracticeto usethe sameUNIX userfor the CLI and
the webserverbecauseit avoidsanyof thesepermissionsissueswhensettingup newprojects.This
canbe doneby editing your web serverconfiguration (e.g.commonly httpd.conf or apache2.conf
for Apache)and settingits userto be the sameasyour CLI user(e.g.for Apache,updatethe User
andGroupvalues).

2. Using ACL on a system that supports chmod +a

Many systemsallow you to usethe chmod +a command.Try this first, and if you get an error -
try the next method. This usesa commandto try to determineyour web serveruserand set it as
HTTPDUSER:

1
2
3
4
5
6

$ rm -rf app/cache/*
$ rm -rf app/logs/*

$ HTTPDUSER=` ps aux | grep -E '[a]pache|[h]ttpd|[_]www|[w]ww-data|[n]ginx' | grep -v
root | head -1 | cut -d \ -f1 `
$ sudo chmod +a " $HTTPDUSERallow delete,write,append,file_inherit,directory_inherit"
app/cache app/logs
$ sudo chmod +a "`whoami` allow delete,write,append,file_inherit,directory_inherit"
app/cache app/logs

3. Using ACL on a system that does not support chmod +a

Somesystemsdon't support chmod +a, but do support another utility calledsetfacl . You may
needto enableACL support5 on your partition and install setfaclbeforeusingit (asis the casewith
Ubuntu). This uses a command to try to determine your web server user and set it asHTTPDUSER:

1
2
3

$ HTTPDUSER=` ps aux | grep -E '[a]pache|[h]ttpd|[_]www|[w]ww-data|[n]ginx' | grep -v
root | head -1 | cut -d \ -f1 `
$ sudo setfacl -R -m u: " $HTTPDUSER" :rwX -m u: ` whoamì:rwX app/cache app/logs
$ sudo setfacl -dR -m u: " $HTTPDUSER" :rwX -m u: ` whoamì:rwX app/cache app/logs

If this doesn't work, try adding-n option.

4. Without using ACL

If none of the previous methods work for you, changethe umask so that the cacheand log
directories will be group-writable or world-writable (dependingif the web serveruser and the
commandline userare in the samegroup or not). To achievethis, put the following line at the
beginning of theapp/console, web/app.phpandweb/app_dev.phpfiles:

1
2
3
4
5

umask(0002); // This will let the permissions be 0775

// or

umask(0000); // This will let the permissions be 0777

Note that using the ACL is recommendedwhen you haveaccessto them on your serverbecause
changing the umask is not thread-safe.

5. https://help.ubuntu.com/community/FilePermissionsACLs

PDF brought to you by
generated on September 25, 2015

Chapter 3: Installing and Configuring Symfony | 31

http://sensiolabs.com

Listing 3-15

Listing 3-16

Listing 3-17

Updating Symfony Applications
At this point, you'vecreateda fully-functional Symfonyapplication in which you'll start to developyour
own project. A Symfonyapplication dependson a number of external libraries. Thesearedownloaded
into the vendor/ directory and they are managed exclusively by Composer.

Updating those third-party libraries frequently is a good practice to prevent bugs and security
vulnerabilities. Execute theupdate Composer command to update them all at once:

1
2

$ cd my_project_name/
$ composer update

Dependingon the complexity of your project, this update processcan take up to severalminutes to
complete.

Symfonyprovidesa commandto checkwhether your project'sdependenciescontain any known
security vulnerability:

1 $ php app/console security:check

A good security practice is to executethis command regularly to be able to update or replace
compromised dependencies as soon as possible.

Installing the Symfony Demo Application
The Symfony Demo application is a fully-functional application that shows the recommendedway
to developSymfonyapplications.The application has beenconceivedas a learning tool for Symfony
newcomers and its source code contains tons of comments and helpful notes.

In order to download the Symfony Demo application, executethe democommand of the Symfony
Installer anywhere in your system:

1
2
3
4
5

Linux, Mac OS X
$ symfony demo

Windows
c: \p rojects \> php symfony demo

Once downloaded, enter into the symfony_demo/directory and run the PHP's built-in web server
executingthe php app/console server:run command.Accessto the http://localhost:8000 URL in
your browser to start using the Symfony Demo application.

Installing a Symfony Distribution
Symfony project packages"distributions", which are fully-functional applications that include the
Symfonycore libraries, a selectionof useful bundles, a sensibledirectory structure and somedefault
configuration. In fact, when you createda Symfonyapplication in the previoussections,you actually
downloaded the default distribution provided by Symfony, which is calledSymfony Standard Edition.

The SymfonyStandardEdition is by far the most popular distribution and it's also the best choice
for developersstarting with Symfony.However, the SymfonyCommunity haspublishedother popular
distributions that you may use in your applications:

PDF brought to you by
generated on September 25, 2015

Chapter 3: Installing and Configuring Symfony | 32

http://sensiolabs.com

Listing 3-18

¥ The SymfonyCMF StandardEdition6 is the bestdistribution to get startedwith the Symfony
CMF7 project, which is a project that makesit easierfor developersto add CMS functionality
to applications built with the Symfony Framework.

¥ The SymfonyRESTEdition8 showshow to build an application that providesa RESTfulAPI
using the FOSRestBundle and several other related bundles.

Using Source Control
If you're using a version control systemlike Git9, you can safelycommit all your project's code. The
reason is that Symfony applications already contain a.gitignore file specially prepared for Symfony.

For specificinstructions on how best to setup your project to be stored in Git, seeHow to Createand
Store a Symfony Project in Git.

Checking out a versioned Symfony Application

When using Composerto manageapplication's dependencies,it's recommendedto ignore the entire
vendor/ directory beforecommitting its code to the repository. This meansthat when checkingout a
Symfonyapplication from a Git repository,therewill beno vendor/ directory and the applicationwon't
work out-of-the-box.

In order to makeit work, checkout the Symfonyapplication and then executethe install Composer
command to download and install all the dependencies required by the application:

1
2

$ cd my_project_name/
$ composer install

How doesComposerknow which specificdependenciesto install?Becausewhena Symfonyapplication
is committed to a repository, the composer.json and composer.lock files are also committed. These
files tell Composer which dependencies (and which specific versions) to install for the application.

Beginning Development
Now that you haveafully-functional Symfonyapplication,you canbegindevelopment!Your distribution
may contain somesamplecode- checkthe README.mdfile included with the distribution (open it asa
text file) to learn about what sample code was included with your distribution.

If you'renewto Symfony,checkout "Createyour FirstPagein Symfony", whereyou'll learnhow to create
pages, change configuration, and do everything else you'll need in your new application.

Besureto alsocheckout the Cookbook, which containsa wide varietyof articlesabout solvingspecific
problems with Symfony.

If you want to removethe samplecodefrom your distribution, takea look at this cookbookarticle:
"How to Remove the AcmeDemoBundle"

6. https://github.com/symfony-cmf/symfony-cmf-standard

7. http://cmf.symfony.com/

8. https://github.com/gimler/symfony-rest-edition

9. http://git-scm.com/

PDF brought to you by
generated on September 25, 2015

Chapter 3: Installing and Configuring Symfony | 33

http://sensiolabs.com

Listing 4-1

Chapter 4

Create your First Page in Symfony

Creating a new page - whether it's an HTML page or a JSON endpoint - is a simple two-step process:
1. Create a route: A route is the URL (e.g./about) to your page and points to a controller;
2. Createa controller: A controller is the function you write that builds the page.You take the

incoming requestinformation and useit to createa SymfonyResponseobject, which canhold
HTML content, a JSON string or anything else.

Just like on the web, everyinteraction is initiated by an HTTP request.Your job is pure and simple:
understand that request and return a response.

Creating a Page: Route and Controller

Before continuing, make sure you've read the Installation chapter and can accessyour new
Symfony app in the browser.

Supposeyou want to createa page- /lucky/ number- that generatesa lucky (well, random)numberand
prints it. To do that, createa classand a method insideof it that will beexecutedwhensomeonegoesto
/lucky/number :

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/LuckyController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;
use Symfony\Component\HttpFoundation\Response;

class LuckyController
{

/**
* @Route("/lucky/number")
*/

public function numberAction()

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 34

http://sensiolabs.com

Listing 4-2

14
15
16
17
18
19
20
21

{
$number= rand(0, 100);

return new Response(
'<html><body>Lucky number: ' . $number. '</body></html>'

);
}

}

Before diving into this, test it out!

http://localhost:8000/app_dev.php/lucky/number1

If you setupa proper virtual host in Apacheor Nginx, replacehttp://localhost:8000 with your
host name - likehttp://symfony.dev/app_dev.php/lucky/number .

If you seea lucky numberbeingprinted back to you, congratulations!But beforeyou run off to play the
lottery, check out how this works.

The @RouteabovenumberAction() is calledan annotationand it definesthe URL pattern. You canalso
write routesin YAML (or other formats): readabout this in the routing chapter.Actually, most routing
examples in the docs have tabs that show you how each format looks.

The method below the annotation - numberAction - is called the controllerand is whereyou build the
page.The only rule is that a controller mustreturn a SymfonyResponseobject (and you'll evenlearn to
bend this rule eventually).

What's theapp_dev.phpin the URL?

Great question! By including app_dev.php in the URL, you're executing Symfony through a
file - web/app_dev.php - that boots it in the dev environment. This enablesgreat debugging
tools and rebuilds cached files automatically. For production, you'll use clean URLs - like
http://localhost:8000/ lucky/ number- that executea different file - app.php- that'soptimized
for speed. To learn more about this and environments, seeEnvironments.

Creating a JSON Response

The Responseobjectyou return in your controller cancontainHTML, JSONor evena binary file like an
image or PDF. You can easily set HTTP headers or the status code.

Supposeyou want to createa JSONendpoint that returns the lucky number. Justadd a secondmethod
to LuckyController :

1
2
3
4
5
6
7

// src/AppBundle/Controller/LuckyController.php
// ...

class LuckyController
{

// ...

1. http://localhost:8000/app_dev.php/lucky/number

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 35

http://sensiolabs.com

Listing 4-3

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/**
* @Route("/api/lucky/number")
*/

public function apiNumberAction()
{

$data = array (
'lucky_number' => rand(0, 100),

);

return new Response(
json_encode($data),
200,
array ('Content-Type' => 'application/json')

);
}

}

Try this out in your browser:

http://localhost:8000/app_dev.php/api/lucky/number2

You can even shorten this with the handyJsonResponse3:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/AppBundle/Controller/LuckyController.php
// ...

// --> don't forget this new use statement
use Symfony\Component\HttpFoundation\JsonResponse;

class LuckyController
{

// ...

/**
* @Route("/api/lucky/number")
*/

public function apiNumberAction()
{

$data = array (
'lucky_number' => rand(0, 100),

);

// calls json_encode and sets the Content-Type header
return new JsonResponse($data);

}
}

2. http://localhost:8000/app_dev.php/api/lucky/number

3. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/JsonResponse.html

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 36

http://sensiolabs.com

Listing 4-4

Listing 4-5

Dynamic URL Patterns: /lucky/number/{count}
Woh, you're doing great!But Symfony'srouting can do a lot more. Supposenow that you want a user
to be able to go to /lucky/ number/5to generate5 lucky numbersat once.Update the route to havea
{wildcard} part at the end:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/LuckyController.php
// ...

class LuckyController
{

/**
* @Route("/lucky/number/{count}")
*/

public function numberAction()
{

// ...
}

// ...
}

Becauseof the {count} "placeholder",the URL to the pageis different: it now works for URLsmatching
/lucky/ number/* - for example/lucky/ number/5. The bestpart is that you can accessthis valueand
use it in your controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/AppBundle/Controller/LuckyController.php
// ...

class LuckyController
{

/**
* @Route("/lucky/number/{count}")
*/

public function numberAction($count)
{

$numbers= array ();
for ($i = 0; $i < $count; $i ++) {

$numbers[] = rand(0, 100);
}
$numbersList = implode(', ' , $numbers);

return new Response(
'<html><body>Lucky numbers: ' . $numbersList. '</body></html>'

);
}

// ...
}

Try it by going to/lucky/number/XX - replacing XX withanynumber:

http://localhost:8000/app_dev.php/lucky/number/74

4. http://localhost:8000/app_dev.php/lucky/number/7

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 37

http://sensiolabs.com

Listing 4-6

Listing 4-7

You should see7 lucky numbersprinted out! You canget the valueof any {placeholder} in your route
by adding a$placeholder argument to your controller. Just make sure they have the same name.

The routing systemcan do a lot more, like supporting multiple placeholders(e.g. /blog/ {category}/
{page})), making placeholdersoptional and forcing placeholderto match a regularexpression(e.g.so
that {count} mustbe a number).

Find out about all of this and become a routing expert in theRoutingchapter.

Rendering a Template (with the Service Container)
If you're returning HTML from your controller, you'll probably want to rendera template.Fortunately,
Symfony comes with Twig: a templating language that's easy, powerful and actually quite fun.

Sofar, LuckyController doesn'textendanybaseclass.Theeasiestwayto useTwig - or manyother tools
in Symfony - is to extend Symfony's baseController 5 class:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Controller/LuckyController.php
// ...

// --> add this new use statement
use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

class LuckyController extends Controller
{

// ...
}

Using thetemplating Service

This doesn'tchangeanything,but it doesgiveyou accessto Symfony'scontainer: anarray-likeobject that
givesyou accessto everyusefulobjectin thesystem.Theseusefulobjectsarecalledservices, andSymfony
shipswith aserviceobjectthat canrenderTwig templates,anotherthat canlog messagesandmanymore.

To render a Twig template, use a service calledtemplating :

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/AppBundle/Controller/LuckyController.php
// ...

class LuckyController extends Controller
{

/**
* @Route("/lucky/number/{count}")
*/

public function numberAction($count)
{

// ...
$numbersList = implode(', ' , $numbers);

$html = $this ->container ->get('templating') ->render(
'lucky/number.html.twig' ,
array ('luckyNumberList' => $numbersList)

);

return new Response($html);

5. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 38

http://sensiolabs.com

Listing 4-8

20
21
22
23

}

// ...
}

You'll learn a lot more about the important "servicecontainer" asyou keepreading.For now, you just
needto know that it holds a lot of objects,and you can get() any object by using its nickname, like
templating or logger . The templating serviceis an instanceof TwigEngine6 and this hasa render()
method.

But this cangeteveneasier!By extendingthe Controller class,you alsogeta lot of shortcut methods,
like render() :

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// src/AppBundle/Controller/LuckyController.php
// ...

/**
* @Route("/lucky/number/{count}")
*/

public function numberAction($count)
{

// ...

/*
$html = $this->container->get('templating')->render(

'lucky/number.html.twig',
array('luckyNumberList' => $numbersList)

);

return new Response($html);
*/

// render: a shortcut that does the same as above
return $this ->render(

'lucky/number.html.twig' ,
array ('luckyNumberList' => $numbersList)

);
}

Learn more about these shortcut methods and how they work in theControllerchapter.

For more advanced users, you can alsoregister your controllers as services.

Create the Template

If you refresh now, you'll get an error:

Unable to find template "lucky/number.html.twig"

6. http://api.symfony.com/2.6/Symfony/Bundle/TwigBundle/TwigEngine.html

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 39

http://sensiolabs.com

Listing 4-9

Fix that by creatinga new app/Resources/views/ lucky directory and putting a number.html.twig file
inside of it:

1
2
3
4
5
6

{# app/Resources/views/lucky/number.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
<h1>Lucky Numbers:{{ luckyNumberList }} </h1>

{% endblock %}

Welcometo Twig! This simplefile alreadyshowsoff thebasics:like how the {{ variableName }} syntax
is usedto print something.The luckyNumberList is a variablethat you'repassinginto the templatefrom
the render call in your controller.

The {% extends 'base.html.twig' %} points to a layout file that lives at app/Resources/views/
base.html.twig7 and camewith your new project. It's really basic(an unstyledHTML structure)and it's
yours to customize.The {% block body %}part usesTwig's inheritancesystemto put the content into
the middle of thebase.html.twig layout.

Refresh to see your template in action!

http://localhost:8000/app_dev.php/lucky/number/98

If you view the source code, you now have a basic HTML structure thanks tobase.html.twig .

This is just the surfaceof Twig'spower.When you'rereadyto masterits syntax,loop overarrays,render
other templates and other cool things, read theTemplatingchapter.

Exploring the Project
You'vealreadycreateda flexible URL, rendereda template that usesinheritanceand createda JSON
endpoint. Nice!

It's time to exploreand demystify the files in your project. You'vealreadyworked inside the two most
important directories:
app/app/

Containsthingslike configurationandtemplates.Basically,anythingthat isnot PHPcodegoeshere.

src/src/
Your PHP code lives here.

99% of the time, you'll be working in src/ (PHP files) or app/ (everything else).As you get more
advanced, you'll learn what can be done inside each of these.

The app/ directory alsoholds a few other things, like the cachedirectory app/cache/, the logsdirectory
app/logs/ andapp/AppKernel.php, which you'll useto enablenewbundles(andoneof a veryshort list
of PHP files inapp/).

The src/ directory hasjust one directory - src/ AppBundle- and everythinglives inside of it. A bundle
is like a "plugin" and you can find opensourcebundles9 and install them into your project. But even
your codelives in a bundle - typically AppBundle(though there'snothing specialabout AppBundle). To
find out more about bundlesand why you might createmultiple bundles(hint: sharingcodebetween
projects), see theBundleschapter.

7. https://github.com/symfony/symfony-standard/blob/2.7/app/Resources/views/base.html.twig

8. http://localhost:8000/app_dev.php/lucky/number/9

9. http://knpbundles.com

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 40

http://sensiolabs.com

Listing 4-10

Listing 4-11

So what about the other directories in the project?
vendor/vendor/

Vendor (i.e. third-party) libraries and bundles are downloaded here by the Composer10 package
manager.

web/web/
This is the documentroot for the projectandcontainsanypublicly accessiblefiles, like CSS,images
and the Symfony front controllers that execute the app (app_dev.phpandapp.php).

Symfonyis flexible.If youneedto, youcaneasilyoverridethedefaultdirectorystructure.SeeHow to Override
Symfony's default Directory Structure.

Application Configuration
Symfonycomeswith severalbuilt-in bundles(open your app/AppKernel.php file) and you'll probably
install more. The main configuration file for bundles isapp/config/config.yml :

1
2
3
4
5
6
7
8
9

10
11
12
13
14

app/config/config.yml
...

framework:
secret : "%secret%"
router :

resource: "%kernel.root_dir%/config/routing.yml"
...

twig :
debug: "%kernel.debug%"
strict_variables : "%kernel.debug%"

...

The frameworkkey configuresFrameworkBundle,the twig key configuresTwigBundleand soon. A lot
of behaviorin Symfonycanbe controlled just by changingoneoption in this configuration file. To find
out how, see theConfiguration Referencesection.

Or, to geta big exampledump of all of the valid configurationunder a key, usethe handyapp/console
command:

1 $ app/console config:dump-reference framework

There'sa lot more power behind Symfony'sconfiguration system,including environments,imports and
parameters. To learn all of it, see theConfigurationchapter.

What's Next?
Congrats!You're alreadystarting to masterSymfonyand learn a whole new way of building beautiful,
functional, fast and maintainable apps.

Ok, time to finish mastering the fundamentals by reading these chapters:

¥ Controller

10. https://getcomposer.org

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 41

http://sensiolabs.com

¥ Routing
¥ Creating and Using Templates

Then, learn about Symfony'sservicecontainerthe form system, using Doctrine if you needto query a
database and more. in theSymfony Book.

There's also aCookbookpackedwith more advanced "how to" articles to solvea lot of problems.

Have fun!

PDF brought to you by
generated on September 25, 2015

Chapter 4: Create your First Page in Symfony | 42

http://sensiolabs.com

Listing 5-1

Chapter 5

Controller

A controller is a PHPcallableyou createthat takesinformation from the HTTP requestand createsand
returns an HTTP response(asa SymfonyResponseobject). The responsecould be an HTML page,an
XML document,aserializedJSONarray,an image,a redirect,a404error or anythingelseyou candream
up. The controller containswhateverarbitrary logic your applicationneedsto render the content of a
page.

Seehow simple this is by looking at a Symfonycontroller in action. This rendersa pagethat prints the
famousHello world! :

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\Response;

public function helloAction ()
{

return new Response('Hello world!');
}

The goalof a controller is alwaysthe same:createand return a Responseobject.Along the way, it might
read information from the request,load a databaseresource,sendan email, or set information on the
user'ssession.But in all cases,the controller will eventually return the Responseobject that will be
delivered back to the client.

There's no magic and no other requirements to worry about! Here are a few common examples:

¥ ControllerA preparesa Responseobjectrepresentingthe content for the homepageof the site.
¥ ControllerB readsthe slug parameterfrom the requestto load a blog entry from the database

and createsa Responseobjectdisplayingthat blog. If the slug can't be found in the database,
it creates and returns aResponseobject with a 404 status code.

¥ Controller C handlesthe form submissionof a contact form. It readsthe form information
from the request, savesthe contact information to the databaseand emails the contact
information to you. Finally, it createsa Responseobject that redirectsthe client'sbrowserto
the contact form "thank you" page.

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 43

http://sensiolabs.com

Listing 5-2

Requests, Controller, Response Lifecycle
Everyrequesthandledby aSymfonyprojectgoesthrough thesamesimplelifecycle.The frameworktakes
care of all the repetitive stuff: you just need to write your custom code in the controller function:

1. Each requestis handled by a single front controller file (e.g. app.php or app_dev.php) that
bootstraps the application;

2. The Router readsinformation from the request(e.g.the URI), finds a route that matchesthat
information, and reads the_controller parameter from the route;

3. The controller from the matchedroute is executedand the code inside the controller creates
and returns aResponseobject;

4. The HTTP headers and content of theResponseobject are sent back to the client.

Creating a pageis as easyas creatinga controller (#3) and making a route that mapsa URL to that
controller (#2).

Though similarly named,a "front controller" is different from the "controllers" talkedabout in this
chapter.A front controller is ashort PHPfile that livesin your webdirectoryandthrough which all
requestsaredirected.A typical application will havea production front controller (e.g.app.php)
and a developmentfront controller (e.g. app_dev.php). You'll likely neverneedto edit, view or
worry about the front controllers in your application.

A Simple Controller
While a controller canbeanyPHPcallable(a function, methodon an object,or a Closure), a controller
is usually a method inside a controller class. Controllers are also calledactions.

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Controller/HelloController.php
namespaceAppBundle\Controller ;

use Symfony\Component\HttpFoundation\Response;

class HelloController
{

public function indexAction ($name)
{

return new Response('<html><body>Hello ' . $name. '!</body></html>');
}

}

Note that the controller is the indexAction method, which lives inside a controller class
(HelloController). Don't be confusedby the naming: a controller classis simply a convenient
way to group severalcontrollers/actionstogether.Typically, the controller classwill houseseveral
controllers/actions (e.g.updateAction , deleteAction , etc).

This controller is pretty straightforward:

¥ line 4: Symfonytakesadvantageof PHP'snamespacefunctionality to namespacethe entire
controller class.The use keyword imports the Responseclass,which the controller must
return.

¥ line 6: The classname is the concatenationof a name for the controller class(i.e. Hello)
and the word Controller . This is a convention that providesconsistencyto controllers and

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 44

http://sensiolabs.com

Listing 5-3

Listing 5-4

allows them to be referencedonly by the first part of the name (i.e. Hello) in the routing
configuration.

¥ line 8: Eachaction in a controller classis suffixedwith Action and is referencedin the routing
configurationby the action'sname(index). In the next section,you'll createa route that maps
a URI to this action. You'll learnhow the route'splaceholders({name}) becomeargumentsto
the action method ($name).

¥ line 10: The controller creates and returns aResponseobject.

Mapping a URL to a Controller
The new controller returnsa simpleHTML page.To actuallyview this pagein your browser,you need
to create a route, which maps a specific URL path to the controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Controller/HelloController.php
namespaceAppBundle\Controller ;

use Symfony\Component\HttpFoundation\Response;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class HelloController
{

/**
* @Route("/hello/{name}", name="hello")
*/

public function indexAction ($name)
{

return new Response('<html><body>Hello ' . $name. '!</body></html>');
}

}

Now, you can go to /hello/ ryan (e.g.http://localhost:8000/ hello/ ryan if you're using the built-
in web server) and Symfony will executethe HelloController::indexAction() controller and pass
in ryan for the $namevariable.Creating a "page" meanssimply creatinga controller method and an
associated route.

Simple, right?

The AppBundle:Hello:index controller syntax

If you use the YML or XML formats, you'll refer to the controller using a special shortcut
syntax:AppBundle:Hello:index . For moredetailson thecontroller format, seeControllerNaming
Pattern.

You can learn much more about the routing system in theRouting chapter.

Route Parameters as Controller Arguments

You alreadyknow that the route points to the HelloController::indexAction() method that lives
inside AppBundle. What's more interesting is the argument that is passed to that method:

1
2

// src/AppBundle/Controller/HelloController.php
// ...

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 45

http://sensiolabs.com

Listing 5-5

Listing 5-6

Listing 5-7

Listing 5-8

3
4
5
6
7
8
9

10
11

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

/**
* @Route("/hello/{name}", name="hello")
*/

public function indexAction ($name)
{

// ...
}

The controller has a single argument, $name, which correspondsto the {name} parameterfrom the
matchedroute (ryan if you go to /hello/ ryan). When executingyour controller, Symfonymatcheseach
argument with a parameter from the route. So the value for{name}is passed to$name.

Take the following more-interesting example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/HelloController.php
// ...

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class HelloController
{

/**
* @Route("/hello/{firstName}/{lastName}", name="hello")
*/

public function indexAction ($firstName , $lastName)
{

// ...
}

}

Now, the controller can have two arguments:

1
2
3
4

public function indexAction ($firstName , $lastName)
{

// ...
}

Mapping route parametersto controller argumentsis easyand flexible. Keepthe following guidelinesin
mind while you develop.

¥ The order of the controller arguments does not matter

Symfonymatchesthe parameternamesfrom the route to the variablenamesof the controller.
The arguments of the controller could be totally reordered and still work perfectly:

1
2
3
4

public function indexAction ($lastName, $firstName)
{

// ...
}

¥ Each required controller argument must match up with a routing parameter

The following would throw aRuntimeExceptionbecausethereis no foo parameterdefinedin
the route:

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 46

http://sensiolabs.com

Listing 5-9

Listing 5-10

Listing 5-11

1
2
3
4

public function indexAction ($firstName , $lastName, $foo)
{

// ...
}

Making the argumentoptional, however, is perfectly ok. The following examplewould not
throw an exception:

1
2
3
4

public function indexAction ($firstName , $lastName, $foo = 'bar')
{

// ...
}

¥ Not all routing parameters need to be arguments on your controller

If, for example,the lastNameweren'timportant for your controller, you could omit it entirely:

1
2
3
4

public function indexAction ($firstName)
{

// ...
}

Everyroute alsohasa special_route parameter,which is equalto the nameof the route that was
matched(e.g.hello). Though not usually useful, this is also availableasa controller argument.
You canalsopassother variablesfrom your route to your controller arguments.SeeHow to Pass
Extra Information from a Route to a Controller.

TheRequestas a Controller Argument

What if you needto readquery parameters,graba requestheaderor getaccessto an uploadedfile?All
of that information is storedin Symfony'sRequestobject. To get it in your controller, just add it asan
argument andtype-hint it with the Request class :

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Request;

public function indexAction ($firstName , $lastName, Request $request)
{

$page = $request->query->get('page' , 1);

// ...
}

Want to know more about getting information from the request? SeeAccess Request Information.

The Base Controller Class
For convenience,Symfonycomeswith an optional baseController class.If you extend it, you'll get
accessto anumberof helpermethodsandall of your serviceobjectsvia the container(seeAccessingother
Services).

Add theusestatement atop theController class and then modify theHelloController to extend it:

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 47

http://sensiolabs.com

Listing 5-12

Listing 5-13

Listing 5-14

Listing 5-15

1
2
3
4
5
6
7
8
9

// src/AppBundle/Controller/HelloController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

class HelloController extends Controller
{

// ...
}

This doesn'tactuallychangeanythingabout how your controller works: it just givesyou accessto helper
methodsthat the basecontroller classmakesavailable.Theseare just shortcutsto using coreSymfony
functionality that'savailableto you with or without the useof the baseController class.A greatway to
see the core functionality in action is to look in theController class1.

If you'recuriousabouthowa controllerwouldwork that did not extendthis baseclass,checkout Controllers
asServices. Thisisoptional,but cangiveyoumorecontrolovertheexactobjects/dependenciesthat areinjected
into your controller.

Redirecting

If you want to redirect the user to another page, use theredirectToRoute() method:

1
2
3
4
5
6
7

public function indexAction ()
{

return $this ->redirectToRoute ('homepage');

// redirectToRoute is equivalent to using redirect() and generateUrl() together:
// return $this->redirect($this->generateUrl('homepage'), 301);

}

New in version2.6: The redirectToRoute() method was introduced in Symfony2.6. Previously(and
still now), you could useredirect() andgenerateUrl() together for this (see the example above).

Or, if you want to redirect externally, just useredirect() and pass it the URL:

1
2
3
4

public function indexAction ()
{

return $this ->redirect ('http://symfony.com/doc');
}

By default, the redirectToRoute() method performs a 302 (temporary) redirect. To perform a 301
(permanent) redirect, modify the third argument:

1
2
3
4

public function indexAction ()
{

return $this ->redirectToRoute ('homepage', array (), 301);
}

1. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/Controller.php

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 48

http://sensiolabs.com

Listing 5-16

Listing 5-17

Listing 5-18

Listing 5-19

Listing 5-20

The redirectToRoute() method is simply a shortcut that createsa Responseobject that
specializes in redirecting the user. It's equivalent to:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\RedirectResponse;

public function indexAction ()
{

return new RedirectResponse($this ->generateUrl ('homepage'));
}

Rendering Templates

If you'reservingHTML, you'll want to rendera template.The render() methodrendersa templateand
puts that content into aResponseobject for you:

1
2

// renders app/Resources/views/hello/index.html.twig
return $this ->render('hello/index.html.twig' , array ('name' => $name));

You can also put templates in deepersub-directories.Just try to avoid creating unnecessarilydeep
structures:

1
2
3
4

// renders app/Resources/views/hello/greetings/index.html.twig
return $this ->render('hello/greetings/index.html.twig' , array (

'name' => $name
));

The Symfony templating engine is explained in great detail in theTemplatingchapter.

Referencing Templates that Live inside the Bundle

You can also put templatesin the Resources/views directory of a bundle and referencethem
with a BundleName:DirectoryName:FileName syntax. For example,
AppBundle:Hello:index.html.twig would refer to the template located in src/ AppBundle/
Resources/views/Hello/index.html.twig . SeeReferencing Templates in a Bundle.

Accessing other Services

Symfony comes packed with a lot of useful objects, called services.These are used for rendering
templates,sendingemails,querying the databaseand any other "work" you can think of. When you
install a new bundle, it probably brings in evenmoreservices.

When extendingthe basecontroller class,you can accessany Symfonyservicevia the get() method.
Here are several common services you might need:

1
2
3
4
5

$templating = $this ->get('templating');

$router = $this ->get('router');

$mailer = $this ->get('mailer');

What other services exist? To list all services, use thedebug:container console command:

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 49

http://sensiolabs.com

Listing 5-21

Listing 5-22

Listing 5-23

1 $ php app/console debug:container

New in version 2.6:Prior to Symfony 2.6, this command was calledcontainer:debug .

For more information, see theService Containerchapter.

Managing Errors and 404 Pages
When things arenot found, you should play well with the HTTP protocol and return a 404 response.
To do this, you'll throw a specialtype of exception.If you'reextendingthe basecontroller class,do the
following:

1
2
3
4
5
6
7
8
9

10

public function indexAction ()
{

// retrieve the object from database
$product = ... ;
if (! $product) {

throw $this ->createNotFoundException('The product does not exist');
}

return $this ->render(...);
}

ThecreateNotFoundException() methodis just ashortcut to createaspecialNotFoundHttpException2

object, which ultimately triggers a 404 HTTP response inside Symfony.

Of course,you'refreeto throw anyException classin your controller - Symfonywill automaticallyreturn
a 500 HTTP response code.

1 throw new \Exception ('Something went wrong!');

In everycase,anerror pageis shownto the enduseranda full debugerror pageis shownto the developer
(i.e. when you're usingapp_dev.php- seeEnvironments).

You'll want to customizethe error pageyour user sees.To do that, seethe "How to CustomizeError
Pages" cookbook recipe.

Managing the Session
Symfonyprovidesa nice sessionobject that you can use to store information about the user (be it a
real personusing a browser,a bot, or a web service)betweenrequests.By default, Symfonystoresthe
attributes in a cookie by using the native PHP sessions.

Storing and retrieving information from the session can be easily achieved from any controller:

1
2
3
4
5
6
7

use Symfony\Component\HttpFoundation\Request;

public function indexAction (Request $request)
{

$session = $request->getSession();

// store an attribute for reuse during a later user request

2. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Exception/NotFoundHttpException.html

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 50

http://sensiolabs.com

Listing 5-24

Listing 5-25

8
9

10
11
12
13
14
15

$session->set ('foo' , 'bar');

// get the attribute set by another controller in another request
$foobar = $session->get('foobar');

// use a default value if the attribute doesn't exist
$filters = $session->get('filters' , array ());

}

These attributes will remain on the user for the remainder of that user's session.

Flash Messages

You can also store small messagesthat will be stored on the user'ssessionfor exactly one additional
request.This is usefulwhen processinga form: you want to redirectand havea specialmessageshown
on thenextpage. These types of messages are called "flash" messages.

For example, imagine you're processing a form submit:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

use Symfony\Component\HttpFoundation\Request;

public function updateAction (Request $request)
{

$form = $this ->createForm(...);

$form->handleRequest($request);

if ($form->isValid ()) {
// do some sort of processing

$this ->addFlash(
'notice' ,
'Your changes were saved!'

);

// $this->addFlash is equivalent to $this->get('session')->getFlashBag()->add

return $this ->redirectToRoute (...);
}

return $this ->render(...);
}

After processingthe request,the controller setsa notice flashmessagein the sessionand then redirects.
The name (notice) isn't significant - it's just something you invent and reference next.

In the template of the next action, the following code could be used to render thenotice message:

1
2
3
4
5

{% for flashMessage in app.session.flashbag.get ('notice') %}
<div class= "flash-notice" >

{{ flashMessage }}
</div>

{% endfor %}

By design,flash messagesare meant to live for exactly one request(they're "gone in a flash"). They're
designed to be used across redirects exactly as you've done in this example.

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 51

http://sensiolabs.com

Listing 5-26

Listing 5-27

The Response Object
The only requirement for a controller is to return a Responseobject. The Response3 class is an
abstractionaroundtheHTTP response:the text-basedmessagefilled with headersandcontentthat'ssent
back to the client:

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Response;

// create a simple Response with a 200 status code (the default)
$response = new Response('Hello ' . $name, Response:: HTTP_OK);

// create a JSON-response with a 200 status code
$response = new Response(json_encode(array ('name' => $name)));
$response->headers->set ('Content-Type' , 'application/json');

The headers property is a HeaderBag4 object and has somenice methods for getting and setting the
headers.The headernamesarenormalizedsothat usingContent-Type is equivalentto content-type or
evencontent_type .

There are also special classes to make certain kinds of responses easier:

¥ For JSON, there isJsonResponse5. SeeCreating a JSON Response.
¥ For files, there isBinaryFileResponse6. SeeServing Files.
¥ For streamed responses, there isStreamedResponse7. SeeStreaming a Response.

Don't worry! Thereisa lot moreinformationabouttheResponseobjectin thecomponentdocumentation.See
Response.

The Request Object
Besidesthe valuesof the routing placeholders,the controller alsohasaccessto the Requestobject. The
framework injects theRequestobject in the controller if a variable is type-hinted withRequest8:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\HttpFoundation\Request;

public function indexAction (Request $request)
{

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(array ('en' , 'fr'));

$request->query->get('page'); // get a $_GET parameter

$request->request ->get('page'); // get a $_POST parameter
}

Like theResponseobject, the request headers are stored in aHeaderBagobject and are easily accessible.

3. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Response.html

4. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/HeaderBag.html

5. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/JsonResponse.html

6. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/BinaryFileResponse.html

7. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/StreamedResponse.html

8. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 52

http://sensiolabs.com

Listing 5-28

Listing 5-29

Listing 5-30

Don't worry! Thereis a lot moreinformationabouttheRequestobjectin thecomponentdocumentation.See
Request.

Creating Static Pages
You can create a static page without even creating a controller (only a route and template are needed).

SeeHow to Render a Template without a custom Controller.

Forwarding to Another Controller
Though not very common, you can also forward to another controller internally with the forward() 9

method. Instead of redirecting the user's browser, it makes an internal sub-request,and calls the
controller. Theforward() method returns theResponseobject that's returned fromthat controller:

1
2
3
4
5
6
7
8
9

10
11

public function indexAction ($name)
{

$response = $this ->forward ('AppBundle:Something:fancy' , array (
'name' => $name,
'color' => 'green' ,

));

// ... further modify the response or return it directly

return $response;
}

Notice that the forward() method usesa specialstring representationof the controller (seeController
Naming Pattern). In this case, the target controller function will be
SomethingController::fancyAction() inside the AppBundle. The array passed to the method
becomesthe argumentson the resultingcontroller. This sameideais usedwhen embeddingcontrollers
into templates(seeEmbeddingControllers). The targetcontroller methodwould look somethinglike this:

1
2
3
4

public function fancyAction ($name, $color)
{

// ... create and return a Response object
}

Justlike whencreatingacontroller for aroute, theorderof theargumentsof fancyAction doesn'tmatter.
Symfonymatchesthe index key names(e.g.name) with the methodargumentnames(e.g.$name). If you
change the order of the arguments, Symfony will still pass the correct value to each variable.

Validating a CSRF Token
Sometimes,you want to useCSRFprotection in anactionwhereyou don't want to usetheSymfonyForm
component. If, for example,you're doing a DELETE action, you can use the isCsrfTokenValid() 10

method to check the CSRF token:

9. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#forward()

10. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#isCsrfTokenValid()

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 53

http://sensiolabs.com

1
2
3

if ($this ->isCsrfTokenValid ('token_id' , $submittedToken)) {
// ... do something, like deleting an object

}

New in version2.6: The isCsrfTokenValid() shortcut method was introduced in Symfony2.6. It is
equivalent to executing the following code::

use SymfonyComponentSecurityCsrfCsrfToken;
$this->get('security.csrf.token_manager')

->isTokenValid(new CsrfToken('token_id', 'TOKEN'));

Final Thoughts
Wheneveryou createa page,you'll ultimately needto write somecodethat containsthe logic for that
page.In Symfony,this is calleda controller, and it's a PHPfunction whereyou cando anything in order
to return the finalResponseobject that will be returned to the user.

To makelife easier,you canchooseto extendabaseController class,which containsshortcutmethods
for many common controller tasks. For example,since you don't want to put HTML code in your
controller, you can use therender() method to render and return the content from a template.

In other chapters,you'll seehow the controller canbeusedto persistand fetch objectsfrom a database,
process form submissions, handle caching and more.

Learn more from the Cookbook
¥ How to Customize Error Pages
¥ How to Define Controllers as Services

PDF brought to you by
generated on September 25, 2015

Chapter 5: Controller | 54

http://sensiolabs.com

Listing 6-1

Chapter 6

Routing

Beautiful URLs are an absolutemust for any seriousweb application. This meansleavingbehind ugly
URLs likeindex.php?article_id=57 in favor of something like/read/intro-to-symfony .

Having flexibility is evenmore important. What if you needto changethe URL of a pagefrom /blog to
/news?How many links should you needto hunt down and updateto makethe change?If you'reusing
Symfony's router, the change is simple.

The Symfonyrouter letsyou definecreativeURLsthat you mapto different areasof your application.By
the end of this chapter, you'll be able to:

¥ Create complex routes that map to controllers
¥ Generate URLs inside templates and controllers
¥ Load routing resources from bundles (or anywhere else)
¥ Debug your routes

Routing in Action
A routeis a mapfrom a URL path to a controller. For example,supposeyou want to matchanyURL like
/blog/ my-post or /blog/ all-about-symfony and sendit to a controller that can look up and render
that blog entry. The route is simple:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/BlogController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class BlogController extends Controller
{

/**
* @Route("/blog/{slug}", name="blog_show")
*/

public function showAction($slug)
{

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 55

http://sensiolabs.com

Listing 6-2

14
15
16

// ...
}

}

The path definedby the blog_showroute actslike /blog/* wherethe wildcard is giventhe nameslug .
For the URL /blog/ my-blog-post , the slug variablegetsa valueof my-blog-post , which is available
for you to usein your controller (keepreading).The blog_showis the internal nameof the route, which
doesn't have any meaning yet and just needs to be unique. Later, you'll use it to generate URLs.

If you don't want to use annotations, becauseyou don't like them or becauseyou don't want to
dependon the SensioFrameworkExtraBundle,you can also useYaml, XML or PHP. In theseformats,
the _controller parameteris a specialkey that tells Symfony which controller should be executed
when a URL matchesthis route. The _controller string is calledthe logicalname. It follows a pattern
that points to a specific PHP class and method, in this case the
AppBundle\Controller\BlogController::showAction method.

Congratulations!You'vejust createdyour first route and connectedit to a controller. Now, when you
visit /blog/ my-post, the showAction controller will beexecutedand the $slug variablewill beequalto
my-post.

This is the goalof the Symfonyrouter: to map the URL of a requestto a controller. Along the way,you'll
learn all sorts of tricks that make mapping even the most complex URLs easy.

Routing: Under the Hood
When a request is made to your application, it contains an addressto the exact "resource"that the
client is requesting.This addressis calledthe URL, (or URI), andcould be/contact , /blog/ read-me, or
anything else. Take the following HTTP request for example:

1 GET /blog/my-blog-post

The goalof the Symfonyrouting systemis to parsethis URL and determinewhich controller should be
executed. The whole process looks like this:

1. The request is handled by the Symfony front controller (e.g.app.php);
2. The Symfony core (i.e. Kernel) asks the router to inspect the request;
3. The router matchesthe incoming URL to a specificroute and returns information about the

route, including the controller that should be executed;
4. The Symfony Kernel executes the controller, which ultimately returns aResponseobject.

The routing layer is a tool that translates the incoming URL into a specific controller to execute.

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 56

http://sensiolabs.com

Listing 6-3

Listing 6-4

Listing 6-5

Creating Routes
Symfony loads all the routes for your application from a single routing configuration file. The file is
usuallyapp/config/ routing.yml , but canbeconfiguredto beanything(including an XML or PHPfile)
via the application configuration file:

1
2
3
4

app/config/config.yml
framework:

...
router : { resource: "%kernel.root_dir%/config/routing.yml" }

Eventhough all routes are loaded from a single file, it's common practice to include additional
routing resources.To do so, just point out in the main routing configuration file which external
files should be included. See the Including External Routing Resourcessection for more
information.

Basic Route Configuration

Defining a route is easy,and a typical application will havelots of routes.A basicroute consistsof just
two parts: thepath to match and adefaults array:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/MainController.php

// ...
class MainController extends Controller
{

/**
* @Route("/")
*/

public function homepageAction()
{

// ...
}

}

This route matchesthe homepage(/) and maps it to the AppBundle:Main:homepagecontroller. The
_controller string is translatedby Symfonyinto anactualPHPfunction andexecuted.That processwill
be explained shortly in theController Naming Patternsection.

Routing with Placeholders

Of coursethe routing systemsupportsmuch more interestingroutes.Many routeswill contain one or
more named "wildcard" placeholders:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{

/**
* @Route("/blog/{slug}")
*/

public function showAction($slug)

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 57

http://sensiolabs.com

Listing 6-6

Listing 6-7

10
11
12
13

{
// ...

}
}

The path will match anything that looks like /blog/* . Even better, the value matching the {slug}
placeholderwill be availableinside your controller. In other words, if the URL is /blog/ hello-world ,
a $slug variable,with a valueof hello-world , will be availablein the controller. This canbe used,for
example, to load the blog post matching that string.

Thepath will not, however,matchsimply /blog . That'sbecause,by default,all placeholdersarerequired.
This can be changed by adding a placeholder value to thedefaults array.

Required and Optional Placeholders

To makethings more exciting, add a new route that displaysa list of all the availableblog postsfor this
imaginary blog application:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{

// ...

/**
* @Route("/blog")
*/

public function indexAction ()
{

// ...
}

}

Sofar, this route is assimpleaspossible- it containsno placeholdersand will only match the exactURL
/blog . But what if you needthis route to support pagination,where/blog/2 displaysthe secondpageof
blog entries? Update the route to have a new{page} placeholder:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Controller/BlogController.php

// ...

/**
* @Route("/blog/{page}")
*/

public function indexAction ($page)
{

// ...
}

Like the {slug} placeholderbefore,the valuematching{page} will be availableinsideyour controller.
Its value can be used to determine which set of blog posts to display for the given page.

But hold on! Sinceplaceholdersarerequiredby default, this route will no longermatchon simply /blog .
Instead,to seepage1 of the blog, you'd needto usethe URL /blog/1 ! Sincethat'sno way for a rich web
app to behave,modify the route to makethe {page} parameteroptional. This is doneby including it in
the defaults collection:

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 58

http://sensiolabs.com

Listing 6-8

Listing 6-9

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Controller/BlogController.php

// ...

/**
* @Route("/blog/{page}", defaults={"page" = 1})
*/

public function indexAction ($page)
{

// ...
}

By addingpageto the defaults key, the {page} placeholderis no longerrequired.The URL /blog will
match this route and the valueof the pageparameterwill besetto 1. The URL /blog/2 will alsomatch,
giving thepageparameter a value of2. Perfect.

URL Route Parameters

/blog blog {page} = 1

/blog/1 blog {page} = 1

/blog/2 blog {page} = 2

Of course,you can havemore than one optional placeholder(e.g. /blog/ {slug}/ {page}), but
everythingafter an optional placeholdermust be optional. For example,/{page}/ blog is a valid
path, but pagewill always be required (i.e. simply/blog will not match this route).

Routeswith optional parametersat the end will not match on requestswith a trailing slash(i.e.
/blog/ will not match, /blog will match).

Adding Requirements

Take a quick look at the routes that have been created so far:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{

/**
* @Route("/blog/{page}", defaults={"page" = 1})
*/

public function indexAction ($page)
{

// ...
}

/**
* @Route("/blog/{slug}")
*/

public function showAction($slug)
{

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 59

http://sensiolabs.com

Listing 6-10

19
20
21

// ...
}

}

Can you spot the problem? Notice that both routes have patterns that match URLs that look like
/blog/* . The Symfonyrouter will alwayschoosethe first matching route it finds. In other words, the
blog_showroute will neverbe matched.Instead,a URL like /blog/ my-blog-post will match the first
route (blog) and return a nonsense value ofmy-blog-post to the {page} parameter.

URL Route Parameters

/blog/2 blog {page} = 2

/blog/my-blog-post blog {page} = "my-blog-post"

The answerto the problem is to add route requirementsor route conditions(seeCompletelyCustomized
RouteMatchingwith Conditions). The routesin this examplewould work perfectlyif the /blog/ {page}
path only matched URLs where the {page} portion is an integer. Fortunately, regular expression
requirements can easily be added for each parameter. For example:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/BlogController.php

// ...

/**
* @Route("/blog/{page}", defaults={"page": 1}, requirements={
* "page": "\d+"
* })
*/

public function indexAction ($page)
{

// ...
}

The \d+ requirementis a regularexpressionthat saysthat the valueof the {page} parametermust be a
digit (i.e. a number).The blog route will still matchon a URL like /blog/2 (because2 is a number),but
it will no longer match a URL like/blog/my-blog-post (becausemy-blog-post is not a number).

As a result, a URL like/blog/my-blog-post will now properly match theblog_showroute.

URL Route Parameters

/blog/2 blog {page} = 2

/blog/my-blog-post blog_show {slug} = my-blog-post

/blog/2-my-blog-post blog_show {slug} = 2-my-blog-post

Earlier Routes always Win

What this all meansis that the order of the routesis very important. If the blog_showroute were
placedabovethe blog route, the URL /blog/2 would match blog_showinsteadof blog since
the {slug} parameterof blog_showhas no requirements.By using proper ordering and clever
requirements, you can accomplish just about anything.

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 60

http://sensiolabs.com

Listing 6-11

Listing 6-12

Since the parameter requirements are regular expressions,the complexity and flexibility of each
requirementis entirelyup to you. Supposethe homepageof your application is availablein two different
languages, based on the URL:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/AppBundle/Controller/MainController.php

// ...
class MainController extends Controller
{

/**
* @Route("/{_locale}", defaults={"_locale": "en"}, requirements={
* "_locale": "en|fr"
* })
*/

public function homepageAction($_locale)
{
}

}

For incoming requests,the {_locale} portion of the URL is matchedagainstthe regular expression
(en|fr) .

Path Parameters

/ {_locale} = "en"

/en {_locale} = "en"

/fr {_locale} = "fr"

/es won't match this route

Adding HTTP Method Requirements

In addition to the URL, you can alsomatch on the methodof the incoming request(i.e. GET, HEAD,
POST,PUT, DELETE). Supposeyou havea contact form with two controllers - one for displayingthe
form (on a GET request)and onefor processingthe form when it's submitted(on a POSTrequest).This
can be accomplished with the following route configuration:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/AppBundle/Controller/MainController.php
namespaceAppBundle\Controller ;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Method ;
// ...

class MainController extends Controller
{

/**
* @Route("/news")
* @Method("GET")
*/

public function newsAction()
{

// ... display your news
}

/**
* @Route("/contact")

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 61

http://sensiolabs.com

Listing 6-13

20
21
22
23
24
25
26

* @Method({"GET", "POST"})
*/

public function contactFormAction ()
{

// ... display and process a contact form
}

}

Despitethe fact that thesetwo routes haveidentical paths (/contact), the first route will match only
GET requestsand the secondroute will matchonly POSTrequests.This meansthat you candisplaythe
form and submit the form via the same URL, while using distinct controllers for the two actions.

If no methodsare specified, the route will match onall methods.

Adding a Host Requirement

You canalsomatchon the HTTP hostof the incoming request.For more information, seeHow to Match
a Route Based on the Hostin the Routing component documentation.

Completely Customized Route Matching with Conditions

As you'veseen,a route can be madeto match only certain routing wildcards (via regularexpressions),
HTTP methods, or host names.But the routing systemcan be extendedto have an almost infinite
flexibility using conditions :

1
2
3
4

contact :
path: /contact
defaults : { _controller : AcmeDemoBundle: Main: contact }
condition : "context.getMethod() in ['GET', 'HEAD'] and

request.headers.get('User-Agent') matches '/firefox/i'"

The condition is an expression,and you can learn more about its syntaxhere:TheExpressionSyntax.
With this, the route won't matchunlessthe HTTP methodis eitherGET or HEAD andif the User-Agent
header matchesfirefox .

You cando anycomplexlogic you needin the expressionby leveragingtwo variablesthat arepassedinto
the expression:
contextcontext

An instanceof RequestContext1, which holds the most fundamentalinformation about the route
being matched.

requestrequest
The SymfonyRequest2 object (seeRequest).

Conditions arenot taken into account when generating a URL.

1. http://api.symfony.com/2.6/Symfony/Component/Routing/RequestContext.html

2. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 62

http://sensiolabs.com

Listing 6-14

Listing 6-15

Expressions are Compiled to PHP

Behindthe scenes,expressionsarecompiled down to raw PHP.Our examplewould generatethe
following PHP in the cache directory:

1
2
3
4
5
6

if (rtrim ($pathinfo , '/contact') === '' && (
in_array ($context ->getMethod(), array (0 => "GET", 1 => "HEAD"))
&& preg_match("/firefox/i" , $request->headers->get("User-Agent"))

)) {
// ...

}

Becauseof this, usingthe condition keycausesno extraoverheadbeyondthe time it takesfor the
underlying PHP to execute.

Advanced Routing Example

At this point, you have everythingyou need to createa powerful routing structure in Symfony.The
following is an example of just how flexible the routing system can be:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

// src/AppBundle/Controller/ArticleController.php

// ...
class ArticleController extends Controller
{

/**
* @Route(
* "/articles/{_locale}/{year}/{title}.{_format}",
* defaults={"_format": "html"},
* requirements={
* "_locale": "en|fr",
* "_format": "html|rss",
* "year": "\d+"
* }
*)
*/

public function showAction($_locale , $year, $title)
{
}

}

As you'veseen,this route will only match if the {_locale} portion of the URL is either en or fr and if
the {year} is a number.This route alsoshowshow you canusea dot betweenplaceholdersinsteadof a
slash. URLs matching this route might look like:

¥ /articles/en/2010/my-post
¥ /articles/fr/2010/my-post.rss
¥ /articles/en/2013/my-latest-post.html

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 63

http://sensiolabs.com

Listing 6-16

The Special_format Routing Parameter

This examplealsohighlights the special_format routing parameter.When using this parameter,
the matchedvalue becomesthe "requestformat" of the Requestobject. Ultimately, the request
format is usedfor such things as setting the Content-Type of the response(e.g. a json request
format translatesinto a Content-Type of application/ json). It canalsobeusedin the controller
to renderadifferent templatefor eachvalueof _format . The_format parameteris averypowerful
way to render the same content in different formats.

Sometimesyou want to makecertainpartsof your routesgloballyconfigurable.Symfonyprovides
you with a way to do this by leveragingservicecontainer parameters.Readmore about this in
"How to Use Service Container Parameters in your Routes".

Special Routing Parameters

As you've seen,eachrouting parameteror default value is eventuallyavailableas an argument in the
controller method.Additionally, therearethreeparametersthat arespecial:eachaddsa unique pieceof
functionality inside your application:
_controller_controller

As you'veseen,this parameteris usedto determinewhich controller is executedwhen the route is
matched.

_format_format
Used to set the request format (read more).

_locale_locale
Used to set the locale on the request (read more).

Controller Naming Pattern
Everyroute must havea _controller parameter,which dictateswhich controller should be executed
whenthat route is matched.This parameterusesasimplestringpatterncalledthe logicalcontrollername,
which Symfonymapsto a specificPHPmethodandclass.The patternhasthreeparts,eachseparatedby
a colon:

bundle:controller :action

For example, a_controller value ofAppBundle:Blog:showmeans:

Bundle Controller Class Method Name

AppBundle BlogController showAction

The controller might look like this:

1
2
3
4

// src/AppBundle/Controller/BlogController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 64

http://sensiolabs.com

Listing 6-17

5
6
7
8
9

10
11
12

class BlogController extends Controller
{

public function showAction($slug)
{

// ...
}

}

Notice that Symfony adds the string Controller to the classname (Blog => BlogController) and
Action to the method name (show=> showAction).

You could also refer to this controller using its fully-qualified class name and method:
AppBundle\Controller\BlogController::showAction . But if you follow somesimpleconventions,the
logical name is more concise and allows more flexibility.

In addition to using the logical name or the fully-qualified classname, Symfony supports a
third way of referring to a controller. This method uses just one colon separator (e.g.
service_name:indexAction) and refers to the controller as a service (see How to Define
Controllers as Services).

Route Parameters and Controller Arguments
The route parameters(e.g. {slug}) are especiallyimportant becauseeach is made available as an
argument to the controller method:

1
2
3
4

public function showAction($slug)
{

// ...
}

In reality, the entiredefaults collection is mergedwith the parametervaluesto form asinglearray.Each
key of that array is available as an argument on the controller.

In other words, for eachargumentof your controller method, Symfonylooks for a route parameterof
that nameand assignsits valueto that argument.In the advancedexampleabove,any combination (in
any order) of the following variables could be used as arguments to theshowAction() method:

¥ $_locale
¥ $year
¥ $title
¥ $_format
¥ $_controller
¥ $_route

Sincethe placeholdersand defaults collection aremergedtogether,eventhe $_controller variableis
available. For a more detailed discussion, seeRoute Parameters as Controller Arguments.

The special$_route variable is set to the name of the route that was matched.

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 65

http://sensiolabs.com

Listing 6-18

Listing 6-19

Listing 6-20

You can evenadd extra information to your route definition and accessit within your controller. For
more information on this topic, seeHow to Pass Extra Information from a Route to a Controller.

Including External Routing Resources
All routes are loaded via a single configuration file - usually app/config/ routing.yml (seeCreating
Routesabove).However,if you userouting annotations,you'll needto point the router to the controllers
with the annotations. This can be done by "importing" directories into the routing configuration:

1
2
3
4

app/config/routing.yml
app:

resource: "@AppBundle/Controller/"
type: annotation # required to enable the Annotation reader for this resource

When importing resourcesfrom YAML, the key (e.g. app) is meaningless.Just be sure that it's
unique so no other lines override it.

The resource key loadsthe givenrouting resource.In this examplethe resourceis adirectory,wherethe
@AppBundleshortcut syntaxresolvesto the full path of the AppBundle.When pointing to a directory,all
files in that directory are parsed and put into the routing.

You can also include other routing configuration files, this is often usedto import the routing of
third party bundles:

1
2
3

app/config/routing.yml
app:

resource: "@AcmeOtherBundle/Resources/config/routing.yml"

Prefixing Imported Routes

You can also chooseto provide a "prefix" for the imported routes.For example,supposeyou want to
prefix all routes in the AppBundle with/site (e.g./site/blog/{slug} instead of/blog/{slug}):

1
2
3
4
5

app/config/routing.yml
app:

resource: "@AppBundle/Controller/"
type: annotation
prefix : /site

The path of eachroute beingloadedfrom the new routing resourcewill now beprefixedwith the string
/site .

Adding a Host Requirement to Imported Routes

You can set the host regex on imported routes. For more information, seeUsing Host Matching of
Imported Routes.

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 66

http://sensiolabs.com

Listing 6-21

Listing 6-22

Listing 6-23

Listing 6-24

Listing 6-25

Listing 6-26

Visualizing & Debugging Routes
While adding and customizingroutes, it's helpful to be able to visualizeand get detailed information
about your routes.A greatway to seeeveryroute in your application is via the debug:router console
command. Execute the command by running the following from the root of your project.

1 $ php app/console debug:router

New in version 2.6:Prior to Symfony 2.6, this command was calledrouter:debug .

This command will print a helpful list ofall the configured routes in your application:

1
2
3
4
5
6

homepage ANY /
contact GET /contact
contact_process POST /contact
article_show ANY /articles/{_locale}/{year}/{title}.{_format}
blog ANY /blog/{page}
blog_show ANY /blog/{slug}

You can also get very specific information on a single route by including the route name after the
command:

1 $ php app/console debug:router article_show

Likewise, if you want to test whether a URL matchesa given route, you can use the router:match
console command:

1 $ php app/console router:match /blog/my-latest-post

This command will print which route the URL matches.

1 Route "blog_show" matches

Generating URLs
The routing systemshould alsobe usedto generateURLs. In reality, routing is a bidirectional system:
mappingthe URL to a controller+parametersanda route+parametersbackto a URL. The match() 3 and
generate() 4 methods form this bidirectional system. Take theblog_showexample route from earlier:

1
2
3
4
5
6
7
8
9

10

$params= $this ->get('router') ->match('/blog/my-blog-post');
// array(
// 'slug' => 'my-blog-post',
// '_controller' => 'AppBundle:Blog:show',
//)

$uri = $this ->get('router') ->generate('blog_show' , array (
'slug' => 'my-blog-post'

));
// /blog/my-blog-post

3. http://api.symfony.com/2.6/Symfony/Component/Routing/Router.html#match()

4. http://api.symfony.com/2.6/Symfony/Component/Routing/Router.html#generate()

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 67

http://sensiolabs.com

Listing 6-27

Listing 6-28

Listing 6-29

To generatea URL, you needto specifythe nameof the route (e.g.blog_show) and any wildcards (e.g.
slug = my-blog-post) usedin the path for that route. With this information, any URL can easilybe
generated:

1
2
3
4
5
6
7
8
9

10
11
12

class MainController extends Controller
{

public function showAction($slug)
{

// ...

$url = $this ->generateUrl (
'blog_show' ,
array ('slug' => 'my-blog-post')

);
}

}

In controllers that don't extend Symfony'sbaseController 5, you can use the router service's
generate() 6 method:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

use Symfony\Component\DependencyInjection\ContainerAware;

class MainController extends ContainerAware
{

public function showAction($slug)
{

// ...

$url = $this ->container ->get('router') ->generate(
'blog_show' ,
array ('slug' => 'my-blog-post')

);
}

}

In an upcoming section, you'll learn how to generate URLs from inside templates.

If the front-endof your applicationusesAjax requests,you might want to beableto generateURLs
in JavaScriptbasedon your routing configuration.By usingthe FOSJsRoutingBundle7, you cando
exactly that:

1
2
3
4

var url = Routing. generate(
'blog_show' ,
{ "slug" : 'my-blog-post' }

);

For more information, see the documentation for that bundle.

5. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

6. http://api.symfony.com/2.6/Symfony/Component/Routing/Router.html#generate()

7. https://github.com/FriendsOfSymfony/FOSJsRoutingBundle

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 68

http://sensiolabs.com

Listing 6-30

Listing 6-31

Listing 6-32

Listing 6-33

Generating URLs with Query Strings

The generate method takesan arrayof wildcard valuesto generatethe URI. But if you passextraones,
they will be added to the URI as a query string:

1
2
3
4
5

$this ->get('router') ->generate('blog' , array (
'page' => 2,
'category' => 'Symfony'

));
// /blog/2?category=Symfony

Generating URLs from a Template

The most common placeto generatea URL is from within a templatewhen linking betweenpagesin
your application. This is done just as before, but using a template helper function:

1
2
3

Read this blog post.

Generating Absolute URLs

Bydefault, the router will generaterelativeURLs(e.g./blog). From a controller, simply passtrue to the
third argument of thegenerateUrl() method:

1
2

$this ->generateUrl ('blog_show' , array ('slug' => 'my-blog-post'), true);
// http://www.example.com/blog/my-blog-post

From a template,in Twig, simply usethe url() function (which generatesan absoluteURL) rather than
the path() function (which generates a relative URL). In PHP, passtrue to generate() :

1
2
3

Read this blog post.

The host that'susedwhen generatingan absoluteURL is automaticallydetectedusingthe current
Requestobject. When generatingabsoluteURLs from outsidethe web context (for instancein a
consolecommand)this doesn'twork. SeeHow to GenerateURLsandSendEmailsfrom theConsole
to learn how to solve this problem.

Summary
Routing is a systemfor mappingthe URL of incoming requeststo the controller function that should be
called to processthe request.It both allows you to specifybeautiful URLs and keepsthe functionality
of your application decoupledfrom thoseURLs.Routing is a bidirectional mechanism,meaningthat it
should also be used to generate URLs.

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 69

http://sensiolabs.com

Learn more from the Cookbook
¥ How to Force Routes to always Use HTTPS or HTTP

PDF brought to you by
generated on September 25, 2015

Chapter 6: Routing | 70

http://sensiolabs.com

Listing 7-1

Chapter 7

Creating and Using Templates

As you know, the controller is responsiblefor handling each request that comes into a Symfony
application. In reality, the controller delegatesmost of the heavywork to other placesso that codecan
be testedand reused.When a controller needsto generateHTML, CSSor any other content, it hands
the work off to the templatingengine.In this chapter,you'll learnhow to write powerful templatesthat
canbeusedto return content to the user,populateemailbodies,andmore.You'll learnshortcuts,clever
ways to extend templates and how to reuse template code.

How to render templates is covered in thecontrollerpage of the book.

Templates
A templateis simply a text file that cangenerateany text-basedformat (HTML, XML, CSV,LaTeX...).
The most familiar type of templateis a PHPtemplate- a text file parsedby PHPthat containsa mix of
text and PHP code:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<!DOCTYPE html>
<html>

<head>
<title> Welcome to Symfony!</title>

</head>
<body>

<h1><?php echo $page_title ?></h1>

<ul id= "navigation" >
<?php foreach ($navigation as $item) : ?>

<a href= " <?php echo $item->getHref () ?>" >

<?php echo $item->getCaption () ?>

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 71

http://sensiolabs.com

Listing 7-2

Listing 7-3

16
17
18
19

<?php endforeach ?>

</body>
</html>

But Symfonypackagesanevenmorepowerful templatinglanguagecalledTwig1. Twig allowsyou to write
concise,readabletemplatesthat aremore friendly to web designersand, in severalways,morepowerful
than PHP templates:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<!DOCTYPE html>
<html>

<head>
<title> Welcome to Symfony!</title>

</head>
<body>

<h1>{{ page_title }} </h1>

<ul id= "navigation" >
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

</body>

</html>

Twig defines three types of special syntax:
{{ ... }}{{ ... }}

"Says something": prints a variable or the result of an expression to the template.

{% ... %}{% ... %}
"Doessomething":a tag that controlsthe logic of the template;it is usedto executestatementssuch
as for-loops for example.

{# ... #}{# ... #}
"Commentsomething":it's the equivalentof the PHP/* comment*/ syntax.It's usedto addsingle
or multi-line comments. The content of the comments isn't included in the rendered pages.

Twig alsocontainsfilters , which modify contentbeforebeingrendered.The following makesthe title
variable all uppercase before rendering it:

1 {{ title | upper }}

Twig comeswith a long list of tags2 and filters3 that areavailableby default. You canevenaddyour own
extensions4 to Twig as needed.

Registering a Twig extension is as easy as creating a new service and tagging it with
twig.extension tag.

1. http://twig.sensiolabs.org

2. http://twig.sensiolabs.org/doc/tags/index.html

3. http://twig.sensiolabs.org/doc/filters/index.html

4. http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 72

http://sensiolabs.com

Listing 7-4

Listing 7-5

As you'll seethroughout the documentation,Twig also supports functions and new functions can be
easilyadded.For example,the following usesa standardfor tagand the cycle function to print ten div
tags, with alternatingodd, evenclasses:

1
2
3
4
5

{% for i in 0. .10 %}
<div class= " {{ cycle (['odd' , 'even'], i) }} " >

<!-- some HTML here -->
</div>

{% endfor %}

Throughout this chapter, template examples will be shown in both Twig and PHP.

If you dochooseto not useTwig and you disableit, you'll needto implementyour own exception
handler via thekernel.exception event.

Why Twig?

Twig templatesaremeant to be simple and won't processPHPtags.This is by design:the Twig
templatesystemis meantto expresspresentation,not programlogic. The moreyou useTwig, the
more you'll appreciateand benefit from this distinction. And of course,you'll be loved by web
designers everywhere.

Twig canalsodo thingsthat PHPcan't,suchaswhitespacecontrol, sandboxing,automaticHTML
escaping,manual contextual output escaping,and the inclusion of custom functions and filters
that only affecttemplates.Twig containslittle featuresthat makewriting templateseasierandmore
concise. Take the following example, which combines a loop with a logicalif statement:

1
2
3
4
5
6
7

{% for user in users if user.active %}

 {{ user.username }}
{% else %}

 No users found
{% endfor %}

Twig Template Caching

Twig is fast.EachTwig templateis compileddown to anativePHPclassthat is renderedat runtime. The
compiled classesare located in the app/cache/{environment}/ twig directory (where {environment}
is the environment, such as dev or prod) and in some casescan be useful while debugging. See
Environmentsfor more information on environments.

When debugmodeis enabled(common in the dev environment),a Twig templatewill beautomatically
recompiledwhen changesare madeto it. This meansthat during developmentyou can happily make
changesto a Twig templateand instantly seethe changeswithout needingto worry about clearingany
cache.

When debugmode is disabled(common in the prod environment),however,you must clear the Twig
cachedirectory so that the Twig templateswill regenerate.Rememberto do this when deployingyour
application.

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 73

http://sensiolabs.com

Listing 7-6

Listing 7-7

Template Inheritance and Layouts
More often than not, templatesin a project sharecommon elements,like the header,footer, sidebaror
more. In Symfony,this problem is thought about differently: a templatecan be decoratedby another
one.This works exactlythe sameasPHPclasses:templateinheritanceallowsyou to build abase"layout"
templatethat containsall the common elementsof your site definedasblocks (think "PHP classwith
basemethods").A child templatecanextendthe baselayout and overrideany of its blocks (think "PHP
subclass that overrides certain methods of its parent class").

First, build a base layout file:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>

<head>
<meta http-equiv= "Content-Type" content= "text/html; charset=utf-8" />
<title> {% block title %}Test Application {% endblock %}</title>

</head>
<body>

<div id= "sidebar" >
{% block sidebar %}

Home
Blog

{% endblock %}

</div>

<div id= "content" >
{% block body %}{%endblock %}

</div>
</body>

</html>

Though the discussionabout templateinheritancewill be in termsof Twig, the philosophy is the
same between Twig and PHP templates.

This templatedefinesthe baseHTML skeletondocumentof a simpletwo-column page.In this example,
three{% block %}areasaredefined(title , sidebar andbody). Eachblock maybeoverriddenby achild
templateor left with its default implementation.This templatecould alsobe rendereddirectly. In that
case thetitle , sidebar andbodyblocks would simply retain the default values used in this template.

A child template might look like this:

1
2
3
4
5
6
7
8
9

10
11

{# app/Resources/views/blog/index.html.twig #}
{% extends 'base.html.twig' %}

{% block title %}My cool blog posts {% endblock %}

{% block body %}
{% for entry in blog_entries %}

<h2>{{ entry.title }} </h2>
<p>{{ entry.body }} </p>

{% endfor %}
{% endblock %}

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 74

http://sensiolabs.com

Listing 7-8

Listing 7-9

The parenttemplateis identified by a specialstring syntax(base.html.twig). This path is relative
to the app/Resources/views directory of the project. You could also use the logical name
equivalent: ::base.html.twig . This naming convention is explainedfully in TemplateNaming
and Locations.

The key to template inheritance is the {% extends %} tag. This tells the templating engineto first
evaluatethe basetemplate,which setsup the layout and definesseveralblocks. The child template is
then rendered,at which point the title and body blocks of the parent are replacedby thosefrom the
child. Depending on the value ofblog_entries , the output might look like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<!DOCTYPE html>
<html>

<head>
<meta http-equiv= "Content-Type" content= "text/html; charset=utf-8" />
<title> My cool blog posts </title>

</head>
<body>

<div id= "sidebar" >

Home
Blog

</div>

<div id= "content" >
<h2>My first post </h2>
<p>The body of the first post. </p>

<h2>Another post </h2>
<p>The body of the second post. </p>

</div>
</body>

</html>

Notice that sincethe child templatedidn't definea sidebar block, the valuefrom the parent templateis
used instead. Content within a{% block %} tag in a parent template is always used by default.

You can use as many levels of inheritance as you want. In the next section, a common three-level
inheritance model will be explained along with how templates are organized inside a Symfony project.

When working with template inheritance, here are some tips to keep in mind:

¥ If you use{% extends %} in a template, it must be the first tag in that template;

¥ The more {% block %}tagsyou havein your basetemplates,the better. Remember,child
templates don't have to define all parent blocks, so create as many blocks in your base
templatesasyou want and giveeacha sensibledefault. The more blocksyour basetemplates
have, the more flexible your layout will be;

¥ If you find yourself duplicating content in a number of templates,it probably meansyou
should move that content to a {% block %} in a parent template. In somecases,a better
solution may be to move the content to a new templateand include it (seeIncludingother
Templates);

¥ If you need to get the content of a block from the parent template, you can use the {{
parent() }} function. This is useful if you want to add to the contentsof a parent block
instead of completely overriding it:

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 75

http://sensiolabs.com

1
2
3
4
5
6
7

{% block sidebar %}
<h3>Table of Contents </h3>

{# ... #}

{{ parent () }}
{% endblock %}

Template Naming and Locations
By default, templates can live in two different locations:
app/Resources/views/app/Resources/views/

The applications views directory can contain application-wide base templates (i.e. your
application's layouts and templatesof the application bundle) as well as templatesthat override
third party bundle templates (seeOverriding Bundle Templates).

path/to/bundle/Resources/views/path/to/bundle/Resources/views/
Each third party bundle houses its templates in its Resources/views/ directory (and
subdirectories).When you plan to shareyour bundle, you should put the templatesin the bundle
instead of theapp/ directory.

Most of the templatesyou'll uselive in the app/Resources/views/ directory. The path you'll usewill be
relativeto this directory. For example,to render/extendapp/Resources/views/ base.html.twig , you'll
use the base.html.twig path and to render/extend app/Resources/views/ blog/ index.html.twig ,
you'll use theblog/index.html.twig path.

Referencing Templates in a Bundle

Symfonyusesa bundle:directory :filename string syntax for templatesthat live inside a bundle. This
allows for several types of templates, each which lives in a specific location:

¥ AcmeBlogBundle:Blog:index.html.twig : This syntax is used to specify a template for a
specific page. The three parts of the string, each separated by a colon (:), mean the following:

¥ AcmeBlogBundle: (bundle) the templatelivesinsidethe AcmeBlogBundle(e.g.src/
Acme/BlogBundle);

¥ Blog: (directory) indicatesthat the template lives inside the Blog subdirectoryof
Resources/views;

¥ index.html.twig : (filename) the actual name of the file isindex.html.twig .

Assumingthat theAcmeBlogBundlelivesat src/ Acme/BlogBundle, the final path to the layout
would besrc/Acme/BlogBundle/Resources/views/Blog/index.html.twig .

¥ AcmeBlogBundle::layout.html.twig : This syntaxrefersto a basetemplatethat's specificto
theAcmeBlogBundle.Sincethemiddle, "directory", portion ismissing(e.g.Blog), the template
livesat Resources/views/ layout.html.twig insideAcmeBlogBundle.Yes,thereare2 colons
in the middle of the string when the "controller" subdirectory part is missing.

In the Overriding Bundle Templatessection, you'll find out how each template living inside the
AcmeBlogBundle,for example,can be overriddenby placing a templateof the samenamein the app/
Resources/AcmeBlogBundle/views/ directory. This givesthe power to override templatesfrom any
vendor bundle.

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 76

http://sensiolabs.com

Listing 7-10

Hopefully the templatenamingsyntaxlooks familiar - it's similar to the namingconventionused
to refer toController Naming Pattern.

Template Suffix

Every template name also has two extensions that specify theformat andenginefor that template.

Filename Format Engine

blog/index.html.twig HTML Twig

blog/index.html.php HTML PHP

blog/index.css.twig CSS Twig

Bydefault,anySymfonytemplatecanbewritten in eitherTwig or PHP,andthe lastpart of the extension
(e.g..twig or .php) specifieswhich of thesetwo enginesshould beused.The first part of the extension,
(e.g. .html , .css , etc) is the final format that the template will generate.Unlike the engine,which
determineshow Symfonyparsesthe template, this is simply an organizationaltactic used in casethe
sameresourceneedsto berenderedasHTML (index.html.twig), XML (index.xml.twig), or anyother
format. For more information, read theTemplate Formatssection.

The available "engines" can be configured and even new engines added. See Templating
Configurationfor more details.

Tags and Helpers
You alreadyunderstandthe basicsof templates,how they'renamedandhow to usetemplateinheritance.
Thehardestpartsarealreadybehindyou. In this section,you'll learnabouta largegroupof toolsavailable
to helpperform the mostcommontemplatetaskssuchasincluding other templates,linking to pagesand
including images.

Symfony comesbundled with severalspecializedTwig tags and functions that easethe work of the
template designer.In PHP, the templating systemprovides an extensiblehelpersystemthat provides
useful features in a template context.

You'vealreadyseena few built-in Twig tags({% block %}& {% extends %}) aswell asan exampleof a
PHP helper ($view['slots']). Here you will learn a few more.

Including other Templates

You'll often want to include the sametemplateor codefragmenton severalpages.For example,in an
applicationwith "newsarticles",the templatecodedisplayinganarticlemight beusedon thearticledetail
page, on a page displaying the most popular articles, or in a list of the latest articles.

When you need to reusea chunk of PHP code, you typically move the code to a new PHP classor
function. The sameis true for templates.By moving the reusedtemplatecodeinto its own template,it
can be included from any other template. First, create the template that you'll need to reuse.

1
2

{# app/Resources/views/article/article_details.html.twig #}
<h2>{{ article.title }} </h2>

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 77

http://sensiolabs.com

Listing 7-11

Listing 7-12

3
4
5
6
7

<h3 class= "byline" >by {{ article.authorName }} </h3>

<p>
{{ article.body }}

</p>

Including this template from any other template is simple:

1
2
3
4
5
6
7
8
9

10

{# app/Resources/views/article/list.html.twig #}
{% extends 'layout.html.twig' %}

{% block body %}
<h1>Recent Articles <h1>

{% for article in articles %}
{{ include ('article/article_details.html.twig' , { 'article' : article }) }}

{% endfor %}
{% endblock %}

The templateis included using the {{ include() }} function. Notice that the templatenamefollows
the sametypical convention. The article_details.html.twig template usesan article variable,
which we passto it. In this case,you could avoid doing this entirely, as all of the variablesavailable
in list.html.twig arealsoavailablein article_details.html.twig (unlessyou setwith_context5 to
false).

The {'article': article} syntaxis the standardTwig syntaxfor hashmaps(i.e. an arraywith
namedkeys).If you neededto passin multiple elements,it would look like this: {'foo': foo,
'bar': bar} .

New in version2.3: The include()function6 is a new Twig featurethat's availablein Symfony2.3. Prior,
the {% include %} tag7 tag was used.

Embedding Controllers

In somecases,you needto do more than include a simpletemplate.Supposeyou havea sidebarin your
layout that containsthe threemost recentarticles.Retrievingthe threearticlesmay include queryingthe
database or performing other heavy logic that can't be done from within a template.

The solution is to simply embedthe result of an entire controller from your template. First, createa
controller that renders a certain number of recent articles:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Controller/ArticleController.php
namespaceAppBundle\Controller ;

// ...

class ArticleController extends Controller
{

public function recentArticlesAction ($max= 3)
{

// make a database call or other logic

5. http://twig.sensiolabs.org/doc/functions/include.html

6. http://twig.sensiolabs.org/doc/functions/include.html

7. http://twig.sensiolabs.org/doc/tags/include.html

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 78

http://sensiolabs.com

Listing 7-13

Listing 7-14

Listing 7-15

11
12
13
14
15
16
17
18
19

// to get the "$max" most recent articles
$articles = ... ;

return $this ->render(
'article/recent_list.html.twig' ,
array ('articles' => $articles)

);
}

}

The recentList template is perfectly straightforward:

1
2
3
4
5
6

{# app/Resources/views/article/recent_list.html.twig #}
{% for article in articles %}

{{ article.title }}

{% endfor %}

Notice that the article URL is hardcodedin this example(e.g. /article/ *slug*). This is a bad
practice. In the next section, you'll learn how to do this correctly.

To include the controller, you'll needto refer to it using the standardstring syntax for controllers (i.e.
bundle:controller :action):

1
2
3
4
5
6
7
8
9

{# app/Resources/views/base.html.twig #}

{# ... #}
<div id= "sidebar" >

{{ render(controller (
'AppBundle:Article:recentArticles' ,
{ 'max' : 3 }

)) }}
</div>

Wheneveryou find that you needa variable or a pieceof information that you don't haveaccessto
in a template,considerrenderinga controller. Controllers are fast to executeand promote good code
organizationand reuse.Of course,like all controllers, they should ideally be "skinny", meaningthat as
much code as possible lives in reusableservices.

Asynchronous Content with hinclude.js

Controllerscanbeembeddedasynchronouslyusingthe hinclude.js8 JavaScriptlibrary. As the embedded
content comesfrom anotherpage(or controller for that matter), Symfonyusesa versionof the standard
render function to configurehinclude tags:

1
2

{{ render_hinclude (controller ('...')) }}
{{ render_hinclude (url ('...')) }}

8. http://mnot.github.com/hinclude/

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 79

http://sensiolabs.com

Listing 7-16

Listing 7-17

Listing 7-18

Listing 7-19

Listing 7-20

Listing 7-21

hinclude.js9 needs to be included in your page to work.

When usingacontroller insteadof aURL, you mustenablethe Symfonyfragments configuration:

1
2
3
4

app/config/config.yml
framework:

...
fragments: { path: /_fragment }

Default content (while loading or if JavaScriptis disabled) can be set globally in your application
configuration:

1
2
3
4
5

app/config/config.yml
framework:

...
templating :

hinclude_default_template : hinclude.html.twig

You can definedefault templatesper render function (which will overrideany global default template
that is defined):

1
2
3

{{ render_hinclude (controller ('...'), {
'default' : 'default/content.html.twig'

}) }}

Or you can also specify a string to display as the default content:

1 {{ render_hinclude (controller ('...'), { 'default' : 'Loading...' }) }}

Linking to Pages

Creatinglinks to other pagesin your application is oneof the most commonjobs for a template.Instead
of hardcodingURLsin templates,usethe path Twig function (or the router helperin PHP)to generate
URLsbasedon the routing configuration. Later, if you want to modify the URL of a particular page,all
you'll needto do is changethe routing configuration; the templateswill automaticallygeneratethe new
URL.

First, link to the "_welcome" page, which is accessible via the following routing configuration:

1
2
3
4

app/config/routing.yml
_welcome:

path: /
defaults : { _controller : AppBundle: Welcome: index }

To link to the page, just use thepath Twig function and refer to the route:

1 Home

9. http://mnot.github.com/hinclude/

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 80

http://sensiolabs.com

Listing 7-22

Listing 7-23

Listing 7-24

Listing 7-25

Listing 7-26

As expected, this will generate the URL/ . Now, for a more complicated route:

1
2
3
4

app/config/routing.yml
article_show :

path: /article/{slug}
defaults : { _controller : AppBundle: Article : show }

In this case,you need to specify both the route name (article_show) and a value for the {slug}
parameter.Using this route, revisit the recentList templatefrom the previoussectionand link to the
articles correctly:

1
2
3
4
5
6

{# app/Resources/views/article/recent_list.html.twig #}
{% for article in articles %}

{{ article.title }}

{% endfor %}

You can also generate an absolute URL by using theurl Twig function:

1 Home

The same can be done in PHP templates by passing a third argument to thegenerate() method:

1
2
3
4
5

<a href= " <?php echo $view['router'] ->generate(
'_welcome' ,
array (),
true

) ?>" >Home

Linking to Assets

Templatesalsocommonly refer to images,JavaScript,stylesheetsand other assets.Of courseyou could
hard-codethe path to theseassets(e.g. /images/ logo.png), but Symfony provides a more dynamic
option via theasset Twig function:

1
2
3

<link href= " {{ asset ('css/blog.css') }} " rel= "stylesheet" />

Theasset function'smain purposeis to makeyour applicationmoreportable.If your applicationlivesat
the root of your host (e.g.http://example.com10), then the renderedpathsshould be /images/ logo.png .
But if your application livesin a subdirectory(e.g.http://example.com/my_app11), eachassetpath should
renderwith the subdirectory(e.g./my_app/images/logo.png). The asset function takescareof this by
determining how your application is being used and generating the correct paths accordingly.

Additionally, if you usethe asset function, Symfonycan automaticallyappenda query string to your
asset,in order to guaranteethat updated static assetswon't be cachedwhen deployed.For example,
/images/ logo.png might look like /images/ logo.png?v2. For more information, seethe assets_version
configuration option.

10. http://example.com

11. http://example.com/my_app

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 81

http://sensiolabs.com

Listing 7-27

Listing 7-28

Listing 7-29

Listing 7-30

New in version 2.5:Setting versioned URLs on an asset-by-asset basis was introduced in Symfony 2.5.

If you needto setaversionfor aspecificasset,you cansetthe fourth argument(or theversion argument)
to the desired version:

1

If you don't givea versionor passnull , the default packageversion(from assets_version) will beused.If
you passfalse , versioned URL will be deactivated for this asset.

New in version 2.5:Absolute URLs for assets were introduced in Symfony 2.5.

If you needabsoluteURLsfor assets,you cansetthe third argument(or theabsolute argument)to true :

1

Including Stylesheets and JavaScripts in Twig
No sitewould be completewithout including JavaScriptfiles and stylesheets.In Symfony,the inclusion
of these assets is handled elegantly by taking advantage of Symfony's template inheritance.

This sectionwill teachyou the philosophy behind including stylesheetand JavaScriptassetsin
Symfony.Symfonyalsopackagesanotherlibrary, calledAssetic,which follows this philosophybut
allows you to do much more interestingthings with thoseassets.For more information on using
Assetic seeHow to Use Assetic for Asset Management.

Start by adding two blocks to your basetemplate that will hold your assets:one called stylesheets
inside the headtag and anothercalled javascripts just abovethe closingbody tag. Theseblocks will
contain all of the stylesheets and JavaScripts that you'll need throughout your site:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

{# app/Resources/views/base.html.twig #}
<html>

<head>
{# ... #}

{% block stylesheets %}
<link href= " {{ asset ('css/main.css') }} " rel= "stylesheet" />

{% endblock %}
</head>
<body>

{# ... #}

{% block javascripts %}
<script src=" {{ asset('js/main.js') }} " ></script>

{% endblock %}
</body>

</html>

That's easyenough! But what if you need to include an extra stylesheetor JavaScriptfrom a child
template?For example, supposeyou have a contact page and you need to include a contact.css
stylesheetjuston that page. From inside that contact page's template, do the following:

1
2

{# app/Resources/views/contact/contact.html.twig #}
{% extends 'base.html.twig' %}

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 82

http://sensiolabs.com

Listing 7-31

Listing 7-32

3
4
5
6
7
8
9

10

{% block stylesheets %}
{{ parent () }}

<link href= " {{ asset ('css/contact.css') }} " rel= "stylesheet" />
{% endblock %}

{# ... #}

In the child template,you simply overridethe stylesheets block andput your newstylesheettag inside
of that block. Of course,sinceyou want to add to the parent block's content (and not actually replace
it), you shouldusethe parent() Twig function to includeeverythingfrom the stylesheets block of the
base template.

You canalsoinclude assetslocatedin your bundles'Resources/public folder. You will needto run the
php app/console assets:install target [--symlink] command,which moves(or symlinks) files
into the correct location. (target is by default "web").

1 <link href= " {{ asset ('bundles/acmedemo/css/contact.css') }} " rel= "stylesheet" />

The end result is a page that includes both themain.css andcontact.css stylesheets.

Global Template Variables
During eachrequest,Symfonywill set a global templatevariableapp in both Twig and PHP template
enginesby default.The appvariableis a GlobalVariables 12 instancewhich will giveyou accessto some
application specific variables automatically:
app.securityapp.security

The security context.

app.userapp.user
The current user object.

app.requestapp.request
The request object.

app.sessionapp.session
The session object.

app.environmentapp.environment
The current environment (dev, prod, etc).

app.debugapp.debug
True if in debug mode. False otherwise.

1
2
3
4
5

<p>Username:{{ app.user.username }} </p>
{% if app.debug %}

<p>Request method: {{ app.request.method }} </p>
<p>Application Environment: {{ app.environment }} </p>

{% endif %}

12. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Templating/GlobalVariables.html

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 83

http://sensiolabs.com

Listing 7-33

Listing 7-34

Listing 7-35

New in version2.6: The global app.security variable (or the $app->getSecurity() method in PHP
templates) is deprecatedas of Symfony 2.6. Use app.user ($app->getUser()) and is_granted()
($view['security']->isGranted()) instead.

You can add your own global template variables. See the cookbook example onGlobal Variables.

Configuring and Using thetemplating Service
The heartof the templatesystemin Symfonyis the templatingEngine. This specialobject is responsible
for rendering templatesand returning their content. When you render a template in a controller, for
example, you're actually using the templating engine service. For example:

1 return $this ->render('article/index.html.twig');

is equivalent to:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\Response;

$engine = $this ->container ->get('templating');
$content = $engine->render('article/index.html.twig');

return $response = new Response($content);

The templating engine(or "service")is preconfiguredto work automatically inside Symfony.It can, of
course, be configured further in the application configuration file:

1
2
3
4

app/config/config.yml
framework:

...
templating : { engines: ['twig'] }

Several configuration options are available and are covered in theConfiguration Appendix.

The twig engine is mandatory to use the webprofiler (as well as many third-party bundles).

Overriding Bundle Templates
The Symfony community prides itself on creating and maintaining high quality bundles (see
KnpBundles.com13) for a largenumber of different features.Once you usea third-party bundle, you'll
likely need to override and customize one or more of its templates.

Supposeyou'veinstalled the imaginaryopen-sourceAcmeBlogBundlein your project. And while you're
really happy with everything, you want to override the blog "list" page to customize the markup
specificallyfor your application.Bydigginginto the Blog controller of the AcmeBlogBundle,you find the
following:

13. http://knpbundles.com

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 84

http://sensiolabs.com

Listing 7-36 1
2
3
4
5
6
7
8
9

10

public function indexAction ()
{

// some logic to retrieve the blogs
$blogs = ... ;

$this ->render(
'AcmeBlogBundle:Blog:index.html.twig' ,
array ('blogs' => $blogs)

);
}

When the AcmeBlogBundle:Blog:index.html.twig is rendered,Symfonyactuallylooks in two different
locations for the template:

1. app/Resources/AcmeBlogBundle/views/Blog/index.html.twig
2. src/Acme/BlogBundle/Resources/views/Blog/index.html.twig

To override the bundle template, just copy the index.html.twig template from the bundle to app/
Resources/AcmeBlogBundle/views/ Blog/ index.html.twig (the app/Resources/AcmeBlogBundle
directory won't exist, so you'll need to create it). You're now free to customize the template.

If you add a template in a new location, you may needto clear your cache(php app/console
cache:clear), even if you are in debug mode.

This logic also appliesto basebundle templates.Supposealso that eachtemplate in AcmeBlogBundle
inherits from a basetemplatecalledAcmeBlogBundle::layout.html.twig . Justasbefore,Symfonywill
look in the following two places for the template:

1. app/Resources/AcmeBlogBundle/views/layout.html.twig
2. src/Acme/BlogBundle/Resources/views/layout.html.twig

Onceagain,to overridethe template,just copy it from the bundle to app/Resources/AcmeBlogBundle/
views/layout.html.twig . You're now free to customize this copy as you see fit.

If you take a step back, you'll see that Symfony always starts by looking in the app/Resources/
{BUNDLE_NAME}/views/ directory for a template. If the template doesn't exist there, it continues by
checkinginsidethe Resources/views directoryof the bundle itself. This meansthat all bundle templates
can be overridden by placing them in the correctapp/Resourcessubdirectory.

You can also override templatesfrom within a bundle by using bundle inheritance. For more
information, seeHow to Use Bundle Inheritance to Override Parts of a Bundle.

Overriding Core Templates

Sincethe SymfonyFrameworkitself is just a bundle, coretemplatescanbe overriddenin the sameway.
For example,the coreTwigBundlecontainsa numberof different "exception"and "error" templatesthat
canbe overriddenby copyingeachfrom the Resources/views/ Exception directory of the TwigBundle
to, you guessed it, theapp/Resources/TwigBundle/views/Exception directory.

Three-level Inheritance
One commonway to useinheritanceis to usea three-levelapproach.This method works perfectlywith
the three different types of templates that were just covered:

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 85

http://sensiolabs.com

Listing 7-37

Listing 7-38

Listing 7-39

Listing 7-40

¥ Createan app/Resources/views/ base.html.twig file that containsthe main layout for your
application (like in the previous example). Internally, this template is calledbase.html.twig ;

¥ Createa template for each"section" of your site. For example,the blog functionality would
have a template called blog/ layout.html.twig that contains only blog section-specific
elements;

1
2
3
4
5
6
7
8

{# app/Resources/views/blog/layout.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
<h1>Blog Application </h1>

{% block content %}{%endblock %}
{% endblock %}

¥ Create individual templates for each page and make each extend the appropriate section
template. For example, the "index" page would be called something close to blog/
index.html.twig and list the actual blog posts.

1
2
3
4
5
6
7
8
9

{# app/Resources/views/blog/index.html.twig #}
{% extends 'blog/layout.html.twig' %}

{% block content %}
{% for entry in blog_entries %}

<h2>{{ entry.title }} </h2>
<p>{{ entry.body }} </p>

{% endfor %}
{% endblock %}

Notice that this templateextendsthe sectiontemplate(blog/ layout.html.twig) which in turn extends
the base application layout (base.html.twig). This is the common three-level inheritance model.

When building your application, you may chooseto follow this method or simply make each page
templateextendthe baseapplication templatedirectly (e.g. {% extends 'base.html.twig' %}). The
three-templatemodel is a best-practicemethod usedby vendorbundlesso that the basetemplatefor a
bundle can be easily overridden to properly extend your application's base layout.

Output Escaping
When generatingHTML from a template, there is alwaysa risk that a template variablemay output
unintended HTML or dangerousclient-sidecode. The result is that dynamic content could break the
HTML of the resulting pageor allow a malicious user to perform a CrossSiteScripting14 (XSS)attack.
Consider this classic example:

1 Hello {{ name}}

Imagine the user enters the following code for their name:

1 <script> alert ('hello!') </script>

Without any output escaping, the resulting template will cause a JavaScript alert box to pop up:

14. http://en.wikipedia.org/wiki/Cross-site_scripting

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 86

http://sensiolabs.com

Listing 7-41

Listing 7-42

Listing 7-43

Listing 7-44

Listing 7-45

Listing 7-46

1 Hello <script> alert ('hello!') </script>

And while this seemsharmless,if a user can get this far, that sameuser should also be able to write
JavaScript that performs malicious actions inside the secure area of an unknowing, legitimate user.

The answerto the problem is output escaping.With output escapingon, the sametemplatewill render
harmlessly, and literally print thescript tag to the screen:

1 Hello < script > alert('hello! ') < /script >

The Twig and PHP templating systemsapproachthe problem in different ways. If you're using Twig,
output escapingis on by defaultandyou'reprotected.In PHP,output escapingis not automatic,meaning
you'll need to manually escape where necessary.

Output Escaping in Twig

If you'reusingTwig templates,then output escapingis on by default. This meansthat you'reprotected
out-of-the-box from the unintentional consequencesof user-submittedcode. By default, the output
escaping assumes that content is being escaped for HTML output.

In somecases,you'll needto disableoutput escapingwhenyou'rerenderinga variablethat is trustedand
containsmarkup that should not beescaped.Supposethat administrativeusersareableto write articles
that contain HTML code. By default, Twig will escape the article body.

To render it normally, add therawfilter:

1 {{ article.body | raw }}

You can also disableoutput escapinginside a {% block %}areaor for an entire template.For more
information, seeOutput Escaping15 in the Twig documentation.

Output Escaping in PHP

Output escapingis not automatic when using PHP templates.This meansthat unlessyou explicitly
chooseto escapea variable,you'renot protected.To useoutput escaping,usethe specialescape() view
method:

1 Hello <?php echo $view->escape($name) ?>

By default, the escape() method assumesthat the variableis beingrenderedwithin an HTML context
(andthus thevariableisescapedto besafefor HTML). Thesecondargumentletsyou changethecontext.
For example, to output something in a JavaScript string, use thejs context:

1 var myMsg = 'Hello <?php echo $view->escape($name, 'js') ?>';

Debugging
When usingPHP,you canusethe dump()functionfrom theVarDumpercomponentif you needto quickly
find the value of a variable passed. This is useful, for example, inside your controller:

15. http://twig.sensiolabs.org/doc/api.html#escaper-extension

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 87

http://sensiolabs.com

Listing 7-47

Listing 7-48

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/ArticleController.php
namespaceAppBundle\Controller ;

// ...

class ArticleController extends Controller
{

public function recentListAction ()
{

$articles = ... ;
dump($articles);

// ...
}

}

The output of thedump()function is then rendered in the web developer toolbar.

The same mechanism can be used in Twig templates thanks todumpfunction:

1
2
3
4
5
6
7
8

{# app/Resources/views/article/recent_list.html.twig #}
{{ dump(articles) }}

{% for article in articles %}

{{ article.title }}

{% endfor %}

The variableswill only bedumpedif Twig'sdebugsetting(in config.yml) is true . Bydefault this means
that the variables will be dumped in thedevenvironment but not theprod environment.

Syntax Checking
You can check for syntax errors in Twig templates using thetwig:lint console command:

1
2
3
4
5

You can check by filename:
$ php app/console twig:lint app/Resources/views/article/recent_list.html.twig

or by directory:
$ php app/console twig:lint app/Resources/views

Template Formats
Templatesareagenericwayto rendercontentin anyformat. And while in mostcasesyou'll usetemplates
to renderHTML content,a templatecanjust aseasilygenerateJavaScript,CSS,XML or anyother format
you can dream of.

For example,the same"resource"is often renderedin severalformats.To renderan article index pagein
XML, simply include the format in the template name:

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 88

http://sensiolabs.com

Listing 7-49

Listing 7-50

Listing 7-51

¥ XML template name: article/index.xml.twig
¥ XML template filename: index.xml.twig

In reality, this is nothing more than a naming convention and the template isn't actually rendered
differently based on its format.

In many cases,you may want to allow a singlecontroller to rendermultiple different formats basedon
the "request format". For that reason, a common pattern is to do the following:

1
2
3
4
5
6

public function indexAction (Request $request)
{

$format = $request->getRequestFormat();

return $this ->render('article/index.' . $format . '.twig');
}

The getRequestFormaton the Requestobject defaultsto html , but can return any other format based
on the format requestedby the user.The requestformat is most often managedby the routing, wherea
route can be configuredso that /contact setsthe requestformat to html while /contact.xml setsthe
format to xml. For more information, see theAdvanced Example in the Routing chapter.

To create links that include the format parameter, include a_format key in the parameter hash:

1
2
3

PDF Version

Final Thoughts
The templating enginein Symfonyis a powerful tool that can be usedeachtime you needto generate
presentationalcontent in HTML, XML or anyother format. And though templatesareacommonwayto
generatecontent in acontroller, their useis not mandatory.TheResponseobjectreturnedby acontroller
can be created with or without the use of a template:

1
2
3
4
5

// creates a Response object whose content is the rendered template
$response = $this ->render('article/index.html.twig');

// creates a Response object whose content is simple text
$response = new Response('response content');

Symfony'stemplatingengineis veryflexible andtwo different templaterenderersareavailableby default:
the traditional PHP templatesand the sleekand powerful Twig templates.Both support a template
hierarchyandcomepackagedwith arich setof helperfunctionscapableof performingthemostcommon
tasks.

Overall, the topic of templatingshould be thought of asa powerful tool that'sat your disposal.In some
cases, you may not need to render a template, and in Symfony, that's absolutely fine.

Learn more from the Cookbook
¥ How to Use PHP instead of Twig for Templates
¥ How to Customize Error Pages
¥ How to Write a custom Twig Extension

PDF brought to you by
generated on September 25, 2015

Chapter 7: Creating and Using Templates | 89

http://sensiolabs.com

Listing 8-1

Chapter 8

Configuring Symfony (and Environments)

An application consistsof a collection of bundlesrepresentingall the featuresand capabilitiesof your
application. Eachbundle can be customizedvia configuration files written in YAML, XML or PHP.By
default, the main configuration file lives in the app/config/ directory and is calledeither config.yml ,
config.xml or config.php depending on which format you prefer:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

app/config/config.yml
imports :

- { resource: parameters.yml }
- { resource: security.yml }

framework:
secret : "%secret%"
router : { resource: "%kernel.root_dir%/config/routing.yml" }
...

Twig Configuration
twig :

debug: "%kernel.debug%"
strict_variables : "%kernel.debug%"

...

You'll learn exactly how to load each file/format in the next sectionEnvironments.

Each top-level entry like framework or twig defines the configuration for a particular bundle. For
example, the framework key defines the configuration for the core Symfony FrameworkBundleand
includes configuration for the routing, templating, and other core systems.

For now, don't worry about the specificconfiguration options in eachsection.The configuration file
shipswith sensibledefaults.As you readmore and exploreeachpart of Symfony,you'll learnabout the
specific configuration options of each feature.

PDF brought to you by
generated on September 25, 2015

Chapter 8: Configuring Symfony (and Environments) | 90

http://sensiolabs.com

Listing 8-2

Listing 8-3

Listing 8-4

Listing 8-5

Listing 8-6

Configuration Formats

Throughout the chapters,all configuration exampleswill be shown in all three formats (YAML,
XML and PHP).Eachhasits own advantagesand disadvantages.The choiceof which to useis up
to you:

¥ YAML: Simple, clean and readable (learn more about YAML in "The YAML Format");
¥ XML: More powerful than YAML at times and supports IDE autocompletion;
¥ PHP: Very powerful but less readable than standard configuration formats.

Default Configuration Dump
You can dump the default configuration for a bundle in YAML to the consoleusing the config:dump-
reference command. Here is an example of dumping the default FrameworkBundle configuration:

1 $ app/console config:dump-reference FrameworkBundle

The extension alias (configuration key) can also be used:

1 $ app/console config:dump-reference framework

Seethe cookbook article: How to Load ServiceConfigurationinsidea Bundlefor information on
adding configuration for your own bundle.

Environments

An application can run in variousenvironments.The different environmentssharethe samePHPcode
(apart from the front controller), but usedifferent configuration. For instance,a dev environmentwill
log warningsand errors, while a prod environmentwill only log errors. Somefiles are rebuilt on each
requestin the dev environment(for the developer'sconvenience),but cachedin the prod environment.
All environments live together on the same machine and execute the same application.

A Symfonyproject generallybeginswith threeenvironments(dev, test and prod), though creatingnew
environmentsis easy.You can view your application in different environmentssimply by changingthe
front controller in your browser.To seethe application in the dev environment,accessthe application
via the development front controller:

1 http://localhost/app_dev.php/random/10

If you'd like to seehow your application will behavein the production environment,call the prod front
controller instead:

1 http://localhost/app.php/random/10

Sincethe prod environment is optimized for speed;the configuration, routing and Twig templatesare
compiled into flat PHPclassesand cached.When viewingchangesin the prod environment,you'll need
to clear these cached files and allow them to rebuild:

PDF brought to you by
generated on September 25, 2015

Chapter 8: Configuring Symfony (and Environments) | 91

http://sensiolabs.com

Listing 8-7

Listing 8-8

Listing 8-9

1 $ php app/console cache:clear --env =prod --no-debug

If you open the web/app.php file, you'll find that it's configured explicitly to use the prod
environment:

1 $kernel = new AppKernel('prod' , false);

Youcancreateanewfront controller for anewenvironmentby copyingthis file andchangingprod
to some other value.

The test environment is used when running automated tests and cannot be accesseddirectly
through the browser. See thetesting chapterfor more details.

Environment Configuration
The AppKernelclass is responsible for actually loading the configuration file of your choice:

1
2
3
4
5
6
7

// app/AppKernel.php
public function registerContainerConfiguration (LoaderInterface $loader)
{

$loader ->load(
__DIR__. '/config/config_' . $this ->getEnvironment() . '.yml'

);
}

You alreadyknow that the .yml extensioncan be changedto .xml or .php if you prefer to useeither
XML or PHPto write your configuration.Notice alsothat eachenvironmentloadsits own configuration
file. Consider the configuration file for thedevenvironment.

1
2
3
4
5
6
7
8
9

app/config/config_dev.yml
imports :

- { resource: config.yml }

framework:
router : { resource: "%kernel.root_dir%/config/routing_dev.yml" }
profiler : { only_exceptions : false }

...

The imports key is similar to a PHPinclude statementand guaranteesthat the main configuration file
(config.yml) is loadedfirst. The rest of the file tweaksthe default configuration for increasedlogging
and other settings conducive to a development environment.

Both the prod and test environments follow the samemodel: each environment imports the base
configuration file and then modifiesits configuration valuesto fit the needsof the specificenvironment.
This is just a convention,but onethat allowsyou to reusemostof your configurationandcustomizejust
pieces of it between environments.

PDF brought to you by
generated on September 25, 2015

Chapter 8: Configuring Symfony (and Environments) | 92

http://sensiolabs.com

Listing 9-1

Chapter 9

The Bundle System

A bundle is similar to a plugin in other software,but evenbetter. The key differenceis that everything
is a bundle in Symfony,including both the core framework functionality and the codewritten for your
application. Bundlesare first-classcitizens in Symfony.This givesyou the flexibility to use pre-built
featurespackagedin third-party bundlesor to distribute your own bundles.It makesit easyto pick and
choose which features to enable in your application and to optimize them the way you want.

While you'll learnthe basicshere,anentirecookbookentry is devotedto the organizationandbest
practices ofbundles.

A bundle is simply a structuredsetof files within a directory that implementa singlefeature.You might
createa BlogBundle,a ForumBundleor a bundle for usermanagement(many of theseexist alreadyas
open sourcebundles).Eachdirectory contains everythingrelated to that feature, including PHP files,
templates,stylesheets,JavaScriptfiles, testsandanythingelse.Everyaspectof a featureexistsin abundle
and every feature lives in a bundle.

Bundles used in your applications must be enabledby registeringthem in the registerBundles()
method of theAppKernelclass:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// app/AppKernel.php
public function registerBundles ()
{

$bundles = array (
new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
new Symfony\Bundle\SecurityBundle\SecurityBundle (),
new Symfony\Bundle\TwigBundle\TwigBundle(),
new Symfony\Bundle\MonologBundle\MonologBundle(),
new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle (),
new Symfony\Bundle\DoctrineBundle\DoctrineBundle (),
new Symfony\Bundle\AsseticBundle\AsseticBundle (),
new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),
new AppBundle\AppBundle(),

);

PDF brought to you by
generated on September 25, 2015

Chapter 9: The Bundle System | 93

http://sensiolabs.com

Listing 9-2

Listing 9-3

16
17
18
19
20
21
22
23

if (in_array ($this ->getEnvironment(), array ('dev' , 'test'))) {
$bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle ();
$bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle ();
$bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle ();

}

return $bundles;
}

With the registerBundles() method, you have total control over which bundles are used by your
application (including the core Symfony bundles).

A bundle canlive anywhereaslong asit canbeautoloaded(via the autoloaderconfiguredat app/
autoload.php).

Creating a Bundle
The SymfonyStandardEdition comeswith a handy task that createsa fully-functional bundle for you.
Of course, creating a bundle by hand is pretty easy as well.

To show you how simple the bundle systemis, createa new bundle calledAcmeTestBundleand enable
it.

The Acmeportion is just a dummy name that should be replacedby some"vendor" name that
represents you or your organization (e.g. ABCTestBundle for some company namedABC).

Start by creating asrc/Acme/TestBundle/ directory and adding a new file calledAcmeTestBundle.php:

1
2
3
4
5
6
7
8

// src/Acme/TestBundle/AcmeTestBundle.php
namespaceAcme\TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeTestBundleextends Bundle
{
}

The name AcmeTestBundlefollows the standard Bundle naming conventions. You could also
chooseto shortenthe nameof the bundle to simply TestBundleby naming this classTestBundle
(and naming the fileTestBundle.php).

This empty classis the only pieceyou needto createthe new bundle. Though commonly empty, this
class is powerful and can be used to customize the behavior of the bundle.

Now that you've created the bundle, enable it via theAppKernelclass:

1
2
3

// app/AppKernel.php
public function registerBundles ()
{

PDF brought to you by
generated on September 25, 2015

Chapter 9: The Bundle System | 94

http://sensiolabs.com

Listing 9-4

4
5
6
7
8
9

10
11
12

$bundles = array (
// ...
// register your bundle
new Acme\TestBundle\AcmeTestBundle(),

);
// ...

return $bundles;
}

And while it doesn't do anything yet, AcmeTestBundle is now ready to be used.

And as easyas this is, Symfonyalso providesa command-lineinterfacefor generatinga basicbundle
skeleton:

1 $ php app/console generate:bundle --namespace =Acme/TestBundle

The bundle skeletongeneratesa basiccontroller, templateand routing resourcethat canbecustomized.
You'll learn more about Symfony's command-line tools later.

Whenevercreatinga new bundle or usinga third-party bundle, alwaysmakesurethe bundle has
beenenabledin registerBundles() . When using the generate:bundle command,this is done
for you.

Bundle Directory Structure
The directory structure of a bundle is simple and flexible. By default, the bundle systemfollows a
set of conventions that help to keep code consistentbetweenall Symfony bundles. Take a look at
AcmeDemoBundle, as it contains some of the most common elements of a bundle:
Controller/Controller/

Contains the controllers of the bundle (e.g.RandomController.php).

DependencyInjection/DependencyInjection/
Holds certain DependencyInjection Extensionclasses,which may import serviceconfiguration,
register compiler passes or more (this directory is not necessary).

Resources/config/Resources/config/
Houses configuration, including routing configuration (e.g.routing.yml).

Resources/views/Resources/views/
Holds templates organized by controller name (e.g.Hello/index.html.twig).

Resources/public/Resources/public/
Containsweb assets(images,stylesheets,etc) and is copiedor symbolicallylinked into the project
web/directory via theassets:install console command.

Tests/Tests/
Holds all tests for the bundle.

A bundle can be assmall or largeasthe featureit implements.It containsonly the files you needand
nothing else.

PDF brought to you by
generated on September 25, 2015

Chapter 9: The Bundle System | 95

http://sensiolabs.com

As you move through the book, you'll learn how to persistobjects to a database,createand validate
forms, createtranslationsfor your application, write testsand much more. Eachof thesehastheir own
place and role within the bundle.

third-party bundles: http://knpbundles.com1

1. http://knpbundles.com

PDF brought to you by
generated on September 25, 2015

Chapter 9: The Bundle System | 96

http://sensiolabs.com

Listing 10-1

Chapter 10

Databases and Doctrine

One of the most common and challengingtasks for any application involves persistingand reading
information to and from a database.Although the Symfonyfull-stack Frameworkdoesn'tintegrateany
ORM by default, the Symfony StandardEdition, which is the most widely used distribution, comes
integratedwith Doctrine1, a library whosesolegoalis to giveyou powerful tools to makethis easy.In this
chapter,you'll learnthe basicphilosophybehindDoctrine andseehow easyworking with adatabasecan
be.

Doctrine is totally decoupledfrom Symfonyand using it is optional. This chapter is all about
the Doctrine ORM, which aims to let you map objectsto a relational database(suchasMySQL,
PostgreSQLor MicrosoftSQL). If you preferto useraw databasequeries,this is easy,andexplained
in the "How to Use Doctrine DBAL" cookbook entry.

You canalsopersistdata to MongoDB2 usingDoctrine ODM library. For more information, read
the "DoctrineMongoDBBundle3" documentation.

A Simple Example: A Product
The easiestway to understandhow Doctrine works is to seeit in action. In this section,you'll configure
your database, create aProduct object, persist it to the database and fetch it back out.

Configuring the Database

Beforeyou really begin,you'll needto configureyour databaseconnectioninformation. By convention,
this information is usually configured in anapp/config/parameters.yml file:

1
2
3

app/config/parameters.yml
parameters:

database_driver : pdo_mysql

1. http://www.doctrine-project.org/

2. http://www.mongodb.org/

3. https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 97

http://sensiolabs.com

Listing 10-2

Listing 10-3

Listing 10-4

Listing 10-5

4
5
6
7
8
9

database_host: localhost
database_name: test_project
database_user: root
database_password: password

...

Defining the configuration via parameters.yml is just a convention. The parametersdefined in
that file are referenced by the main configuration file when setting up Doctrine:

1
2
3
4
5
6
7
8

app/config/config.yml
doctrine :

dbal :
driver : "%database_driver%"
host : "%database_host%"
dbname: "%database_name%"
user: "%database_user%"
password: "%database_password%"

By separatingthe databaseinformation into a separatefile, you caneasilykeepdifferent versions
of the file on each server.You can also easily store databaseconfiguration (or any sensitive
information) outsideof your project, like insideyour Apacheconfiguration,for example.For more
information, seeHow to Set external Parameters in the Service Container.

Now that Doctrine knows about your database, you can have it create the database for you:

1 $ php app/console doctrine:database:create

Setting up the Database to be UTF8

One mistakeevenseasoneddevelopersmakewhen starting a Symfonyproject is forgetting to set
up default charsetand collation on their database,endingup with latin type collations,which are
default for most databases.They might evenrememberto do it the very first time, but forget that
it's all gone after running a relatively common command during development:

1
2

$ php app/console doctrine:database:drop --force
$ php app/console doctrine:database:create

There'sno way to configurethesedefaultsinsideDoctrine, asit tries to be asagnosticaspossible
in termsof environmentconfiguration. One way to solvethis problem is to configureserver-level
defaults.

SettingUTF8 defaults for MySQL is as simple as adding a few lines to your configuration file
(typically my.cnf):

1
2
3
4

[mysqld]
Version 5.5.3 introduced "utf8mb4", which is recommended
collation-server = utf8mb4_general_ci # Replaces utf8_general_ci
character-set-server = utf8mb4 # Replaces utf8

We recommendagainstMySQL's utf8 characterset, since it doesnot support 4-byte unicode
characters,and strings containing them will be truncated. This is fixed by the newerutf8mb4
character set4.

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 98

http://sensiolabs.com

Listing 10-6

Listing 10-7

Listing 10-8

If you want to useSQLite as your database,you needto set the path where your databasefile
should be stored:

1
2
3
4
5
6

app/config/config.yml
doctrine :

dbal :
driver : pdo_sqlite
path: "%kernel.root_dir%/sqlite.db"
charset : UTF8

Creating an Entity Class

Supposeyou're building an application where products need to be displayed.Without eventhinking
about Doctrine or databases,you already know that you need a Product object to representthose
products. Create this class inside theEntity directory of your AppBundle:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Entity/Product.php
namespaceAppBundle\Entity ;

class Product
{

protected $name;
protected $price ;
protected $description ;

}

The class- often calledan "entity", meaninga basicclassthat holdsdata - is simpleand helpsfulfill the
businessrequirementof needingproducts in your application.This classcan'tbepersistedto a database
yet - it's just a simple PHP class.

Onceyou learn the conceptsbehind Doctrine, you canhaveDoctrine createsimpleentity classes
for you. This will ask you interactive questions to help you build any entity:

1 $ php app/console doctrine:generate:entity

Add Mapping Information

Doctrine allows you to work with databasesin a much more interestingway than just fetching rows of
a column-basedtable into an array.Instead,Doctrine allowsyou to persistentireobjectsto the database
and fetchentireobjectsout of the database.This works by mappinga PHPclassto a databasetable,and
the properties of that PHP class to columns on the table:

4. https://dev.mysql.com/doc/refman/5.5/en/charset-unicode-utf8mb4.html

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 99

http://sensiolabs.com

Listing 10-9

For Doctrine to beableto do this, you just haveto create"metadata",or configurationthat tellsDoctrine
exactlyhow the Product classand its propertiesshould be mappedto the database.This metadatacan
bespecifiedin a numberof different formats including YAML, XML or directly insidethe Product class
via annotations:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

// src/AppBundle/Entity/Product.php
namespaceAppBundle\Entity ;

use Doctrine\ORM\Mappingas ORM;

/**
* @ORM\Entity
* @ORM\Table(name="product")
*/

class Product
{

/**
* @ORM\Column(type="integer")
* @ORM\Id
* @ORM\GeneratedValue(strategy="AUTO")
*/

protected $id ;

/**
* @ORM\Column(type="string", length=100)
*/

protected $name;

/**
* @ORM\Column(type="decimal", scale=2)
*/

protected $price ;

/**
* @ORM\Column(type="text")
*/

protected $description ;
}

A bundle can acceptonly one metadatadefinition format. For example,it's not possibleto mix
YAML metadata definitions with annotated PHP entity class definitions.

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 100

http://sensiolabs.com

Listing 10-10

Listing 10-11

The tablenameis optional and if omitted, will bedeterminedautomaticallybasedon the nameof
the entity class.

Doctrine allows you to choosefrom a wide varietyof different field types,eachwith their own options.
For information on the available field types, see theDoctrine Field Types Referencesection.

Youcanalsocheckout Doctrine'sBasicMappingDocumentation5 for all detailsaboutmappinginformation.
If youuseannotations,you'll needto prependall annotationswith ORM\(e.g.ORM\Column(...)), whichisnot
shownin Doctrine'sdocumentation.You'll alsoneedto includethe use Doctrine\ORM\Mapping as ORM;
statement, whichimportstheORMannotations prefix.

Becareful that your classnameand propertiesaren't mappedto a protectedSQL keyword (such
asgroup or user). For example,if your entity classnameis Group, then, by default, your table
name will be group, which will causean SQL error in some engines.SeeDoctrine's Reserved
SQL keywordsdocumentation6 on how to properly escapethesenames.Alternatively, if you're
freeto chooseyour databaseschema,simply map to a different table nameor column name.See
Doctrine'sPersistent classes7 andProperty Mapping8 documentation.

When using another library or program (e.g. Doxygen) that usesannotations,you should place
the @IgnoreAnnotation annotation on the classto indicate which annotationsSymfonyshould
ignore.

For example, to prevent the@fnannotation from throwing an exception, add the following:

1
2
3
4
5

/**
* @IgnoreAnnotation("fn")
*/

class Product
// ...

Generating Getters and Setters

Eventhough Doctrine now knows how to persista Product object to the database,the classitself isn't
really usefulyet. SinceProduct is just a regularPHPclass,you needto creategetterand settermethods
(e.g. getName(), setName()) in order to accessits properties (since the properties are protected).
Fortunately, Doctrine can do this for you by running:

1 $ php app/console doctrine:generate:entities AppBundle/Entity/Product

This commandmakessurethat all the gettersand settersaregeneratedfor the Product class.This is a
safecommand- you canrun it overand overagain:it only generatesgettersand settersthat don't exist
(i.e. it doesn't replace your existing methods).

5. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html
6. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#quoting-reserved-words

7. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#persistent-classes

8. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 101

http://sensiolabs.com

Listing 10-12

Listing 10-13

Keepin mind that Doctrine'sentity generatorproducessimple getters/setters.You should check
generated entities and adjust getter/setter logic to your own needs.

More aboutdoctrine:generate:entities

With the doctrine:generate:entities command you can:

¥ generate getters and setters;
¥ generate repository classes configured with the

@ORM\Entity(repositoryClass="...") annotation;
¥ generate the appropriate constructor for 1:n and n:m relations.

The doctrine:generate:entities commandsavesa backupof the original Product.php named
Product.php~. In somecases,the presenceof this file cancausea "Cannot redeclareclass"error.
It can be safelyremoved.You can also usethe --no-backup option to preventgeneratingthese
backup files.

Note that you don't needto usethis command.Doctrine doesn'trely on codegeneration.Like with
normal PHPclasses,you just needto makesurethat your protected/privatepropertieshavegetter
and settermethods.Sincethis is a common thing to do when usingDoctrine, this commandwas
created.

You can also generateall known entities (i.e. any PHP classwith Doctrine mapping information) of a
bundle or an entire namespace:

1
2
3
4
5

generates all entities in the AppBundle
$ php app/console doctrine:generate:entities AppBundle

generates all entities of bundles in the Acme namespace
$ php app/console doctrine:generate:entities Acme

Doctrine doesn'tcarewhetheryour propertiesareprotected or private , or whetheryou havea
getter or setter function for a property. The gettersand settersare generatedhere only because
you'll need them to interact with your PHP object.

Creating the Database Tables/Schema

You now havea usableProduct classwith mappinginformation so that Doctrine knows exactlyhow to
persistit. Of course,you don't yet havethe correspondingproduct table in your database.Fortunately,
Doctrine can automatically create all the databasetables needed for every known entity in your
application. To do this, run:

1 $ php app/console doctrine:schema:update --force

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 102

http://sensiolabs.com

Listing 10-14

Actually, this commandis incredibly powerful. It compareswhat your databaseshouldlook like
(basedon the mappinginformation of your entities)with how it actually looks, and generatesthe
SQLstatementsneededto updatethe databaseto whereit should be. In other words, if you add a
newpropertywith mappingmetadatato Product andrun this taskagain,it will generatethe "alter
table" statement needed to add that new column to the existingproduct table.

An evenbetter way to take advantageof this functionality is via migrations9, which allow you to
generatetheseSQL statementsand storethem in migration classesthat canbe run systematically
on your production server in order to track and migrate your database schema safely and reliably.

Your databasenow hasa fully-functional product table with columns that match the metadatayou've
specified.

Persisting Objects to the Database

Now that you havea mappedProduct entity and correspondingproduct table, you're readyto persist
data to the database.From inside a controller, this is pretty easy.Add the following method to the
DefaultController of the bundle:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/AppBundle/Controller/DefaultController.php

// ...
use AppBundle\Entity\Product ;
use Symfony\Component\HttpFoundation\Response;

// ...
public function createAction ()
{

$product = new Product();
$product->setName('A Foo Bar');
$product->setPrice ('19.99');
$product->setDescription ('Lorem ipsum dolor');

$em= $this ->getDoctrine () ->getManager();

$em->persist ($product);
$em->flush ();

return new Response('Created product id ' . $product->getId ());
}

If you're following alongwith this example,you'll needto createa route that points to this action
to see it work.

This article showsworking with Doctrine from within a controller by using the getDoctrine() 10

methodof thecontroller. This methodis ashortcut to getthedoctrine service.You canwork with
Doctrine anywhereelseby injecting that servicein the service.SeeServiceContainerfor more on
creating your own services.

Take a look at the previous example in more detail:

9. https://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html
10. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#getDoctrine()

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 103

http://sensiolabs.com

Listing 10-15

¥ lines 10-13 In this section,you instantiateand work with the $product object like anyother,
normal PHP object.

¥ line 15 This line fetchesDoctrine'sentity managerobject, which is responsiblefor handling
the process of persisting and fetching objects to and from the database.

¥ line 16 The persist() methodtellsDoctrine to "manage"the $product object.This doesnot
actually cause a query to be made to the database (yet).

¥ line 17 When the flush() method is called,Doctrine looks through all of the objectsthat it's
managingto seeif they needto be persistedto the database.In this example,the $product
objecthasnot beenpersistedyet, sothe entity managerexecutesan INSERTqueryanda row is
created in theproduct table.

In fact, sinceDoctrine is awareof all your managedentities,when you call the flush() method,
it calculatesan overall changesetand executesthe queriesin the correct order. It utilizes cached
preparedstatementto slightly improve the performance.For example,if you persista total of 100
Product objectsand then subsequentlycall flush() , Doctrine will execute100 INSERTqueries
using a single prepared statement object.

When creating or updating objects, the workflow is always the same.In the next section, you'll see
how Doctrine is smartenoughto automaticallyissuean UPDATEquery if the recordalreadyexistsin the
database.

Doctrine providesa library that allowsyou to programmaticallyload testingdatainto your project
(i.e. "fixture data"). For information, see the "DoctrineFixturesBundle11" documentation.

Fetching Objects from the Database

Fetchingan object back out of the databaseis eveneasier.For example,supposeyou'veconfigureda
route to display a specificProduct based on itsid value:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

public function showAction($id)
{

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->find ($id);

if (! $product) {
throw $this ->createNotFoundException(

'No product found for id ' . $id
);

}

// ... do something, like pass the $product object into a template
}

You can achievethe equivalentof this without writing any codeby using the @ParamConverter
shortcut. See theFrameworkExtraBundle documentation12 for more details.

11. https://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html

12. https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 104

http://sensiolabs.com

Listing 10-16

Listing 10-17

Listing 10-18

When you queryfor aparticular typeof object,you alwaysusewhat'sknown asits "repository".You can
think of a repositoryasa PHPclasswhoseonly job is to help you fetchentitiesof a certainclass.You can
access the repository object for an entity class via:

1
2

$repository = $this ->getDoctrine ()
->getRepository ('AppBundle:Product');

The AppBundle:Product string is a shortcut you canuseanywherein Doctrine insteadof the full
classnameof the entity (i.e. AppBundle\Entity\Product). As long asyour entity livesunder the
Entity namespace of your bundle, this will work.

Once you have your repository, you have access to all sorts of helpful methods:

1
2
3
4
5
6
7
8
9

10
11
12

// query by the primary key (usually "id")
$product = $repository ->find ($id);

// dynamic method names to find based on a column value
$product = $repository ->findOneById($id);
$product = $repository ->findOneByName('foo');

// find *all* products
$products = $repository ->findAll ();

// find a group of products based on an arbitrary column value
$products = $repository ->findByPrice (19.99);

Of course,you canalsoissuecomplexqueries,which you'll learnmore about in the Queryingfor
Objectssection.

You canalsotake advantageof the useful findBy and findOneBymethodsto easilyfetch objectsbased
on multiple conditions:

1
2
3
4
5
6
7
8
9

10

// query for one product matching by name and price
$product = $repository ->findOneBy(

array ('name' => 'foo' , 'price' => 19.99)
);

// query for all products matching the name, ordered by price
$products = $repository ->findBy (

array ('name' => 'foo'),
array ('price' => 'ASC')

);

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 105

http://sensiolabs.com

Listing 10-19

When you renderany page,you canseehow manyqueriesweremadein the bottom right corner
of the web debug toolbar.

If you click the icon, the profiler will open, showing you the exact queries that were made.

The icon will turn yellow if thereweremore than 50 querieson the page.This could indicatethat
something is not correct.

Updating an Object

Onceyou'vefetchedan object from Doctrine, updating it is easy.Supposeyou havea route that mapsa
product id to an update action in a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

public function updateAction ($id)
{

$em= $this ->getDoctrine () ->getManager();
$product = $em->getRepository ('AppBundle:Product') ->find ($id);

if (! $product) {
throw $this ->createNotFoundException(

'No product found for id ' . $id
);

}

$product->setName('New product name!');
$em->flush ();

return $this ->redirectToRoute ('homepage');
}

Updating an object involves just three steps:
1. fetching the object from Doctrine;
2. modifying the object;
3. calling flush() on the entity manager

Notice that calling $em->persist($product) isn't necessary.Recall that this method simply tells
Doctrine to manageor "watch" the $product object. In this case,sinceyou fetchedthe $product object
from Doctrine, it's already managed.

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 106

http://sensiolabs.com

Listing 10-20

Listing 10-21

Listing 10-22

Deleting an Object

Deleting an object is very similar, but requires a call to theremove() method of the entity manager:

1
2

$em->remove($product);
$em->flush ();

As you might expect,the remove() method notifies Doctrine that you'd like to removethe givenobject
from the database.The actualDELETEquery,however,isn't actuallyexecuteduntil the flush() method
is called.

Querying for Objects
You've already seen how the repository object allows you to run basic queries without any work:

1
2
3

$repository ->find ($id);

$repository ->findOneByName('Foo');

Of course,Doctrine alsoallows you to write more complexqueriesusingthe Doctrine Query Language
(DQL). DQL is similar to SQL except that you should imagine that you're querying for one or more
objects of an entity class (e.g.Product) instead of querying for rows on a table (e.g.product).

When querying in Doctrine, you havetwo options: writing pure Doctrine queriesor using Doctrine's
Query Builder.

Querying for Objects with DQL

Imagine that you want to query for products, but only return products that cost more than 19.99,
orderedfrom cheapestto most expensive.You canuseDoctrine'snativeSQL-like languagecalledDQL
to make a query for this:

1
2
3
4
5
6
7
8
9

10
11

$em= $this ->getDoctrine () ->getManager();
$query = $em->createQuery(

'SELECT p
FROM AppBundle:Product p
WHERE p.price > :price
ORDER BY p.price ASC'

) ->setParameter('price' , '19.99');

$products = $query->getResult ();
// to get just one result:
// $product = $query->setMaxResults(1)->getOneOrNullResult();

If you're comfortablewith SQL, then DQL should feel very natural. The biggestdifferenceis that you
needto think in terms of "objects" insteadof rows in a database.For this reason,you selectfrom the
AppBundle:Productobject(an optional shortcut forAppBundle\Entity\Product) and then alias it asp.

Takenote of the setParameter() method. When working with Doctrine, it's alwaysa good idea
to set any external valuesas "placeholders"(:price in the exampleabove)as it preventsSQL
injection attacks.

The getResult() method returns an array of results. To get only one result, you can use
getOneOrNullResult() :

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 107

http://sensiolabs.com

Listing 10-23

Listing 10-24

Listing 10-25

1 $product = $query->setMaxResults(1) ->getOneOrNullResult();

TheDQL syntaxis incredibly powerful, allowing you to easilyjoin betweenentities(the topic of relations
will be coveredlater), group, etc. For more information, seethe official Doctrine Query Language13

documentation.

Querying for Objects Using Doctrine's Query Builder

Insteadof writing a DQL string, you can alternativelyusea helpful object called the QueryBuilder to
build that string for you:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

$repository = $this ->getDoctrine ()
->getRepository ('AppBundle:Product');

// createQueryBuilder automatically selects FROM AppBundle:Product
// and aliases it to "p"
$query = $repository ->createQueryBuilder ('p')

->where('p.price > :price')
->setParameter('price' , '19.99')
->orderBy('p.price' , 'ASC')
->getQuery();

$products = $query->getResult ();
// to get just one result:
// $product = $query->setMaxResults(1)->getOneOrNullResult();

The QueryBuilder object contains every method necessaryto build your query. By calling the
getQuery() method,the querybuilder returnsanormal Queryobject,which canbeusedto getthe result
of the query.

For more information on Doctrine's Query Builder, consult Doctrine'sQuery Builder14 documentation.

Custom Repository Classes

In the previous sections, you began constructing and using more complex queries from inside a
controller. In order to isolate, test and reusethesequeries, it's a good practice to createa custom
repository class for your entity and add methods with your query logic there.

To do this, add the name of the repository class to your mapping definition:

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Entity/Product.php
namespaceAppBundle\Entity ;

use Doctrine\ORM\Mappingas ORM;

/**
* @ORM\Entity(repositoryClass="AppBundle\Entity\ProductRepository")
*/

class Product
{

//...
}

13. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html

14. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/query-builder.html

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 108

http://sensiolabs.com

Listing 10-26

Listing 10-27

Listing 10-28

Listing 10-29

Doctrine cangeneratethe repositoryclassfor you by running the samecommandusedearlierto generate
the missing getter and setter methods:

1 $ php app/console doctrine:generate:entities AppBundle

Next, add a new method - findAllOrderedByName() - to the newly generatedrepository class.This
method will query for all theProduct entities, ordered alphabetically.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Entity/ProductRepository.php
namespaceAppBundle\Entity ;

use Doctrine\ORM\EntityRepository ;

class ProductRepository extends EntityRepository
{

public function findAllOrderedByName()
{

return $this ->getEntityManager ()
->createQuery(

'SELECT p FROM AppBundle:Product p ORDER BY p.name ASC'
)
->getResult ();

}
}

The entity manager can be accessed via$this->getEntityManager() from inside the repository.

You can use this new method just like the default finder methods of the repository:

1
2
3

$em= $this ->getDoctrine () ->getManager();
$products = $em->getRepository ('AppBundle:Product')

->findAllOrderedByName();

When usinga customrepositoryclass,you still haveaccessto the default finder methodssuchas
find() and findAll() .

Entity Relationships/Associations
Supposethat the products in your application all belong to exactlyone "category".In this case,you'll
needa Category object and a way to relatea Product object to a Category object.Startby creatingthe
Category entity. Sinceyou know that you'll eventuallyneedto persistthe classthrough Doctrine, you
can let Doctrine create the class for you.

1
2
3

$ php app/console doctrine:generate:entity \
--entity ="AppBundle:Category" \
--fields ="name:string(255)"

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 109

http://sensiolabs.com

Listing 10-30

Listing 10-31

This task generatesthe Category entity for you, with an id field, a namefield and the associatedgetter
and setter functions.

Relationship Mapping Metadata

To relatetheCategory andProduct entities,startby creatingaproducts propertyon theCategory class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/AppBundle/Entity/Category.php

// ...
use Doctrine\Common\Collections\ArrayCollection ;

class Category
{

// ...

/**
* @ORM\OneToMany(targetEntity="Product", mappedBy="category")
*/

protected $products;

public function __construct ()
{

$this ->products = new ArrayCollection ();
}

}

First, sincea Category object will relateto many Product objects,a products array property is added
to hold thoseProduct objects.Again, this isn't done becauseDoctrine needsit, but insteadbecauseit
makes sense in the application for eachCategory to hold an array ofProduct objects.

The code in the __construct() method is important becauseDoctrine requiresthe $products
property to beanArrayCollection object.This object looksandactsalmostexactlylike anarray,
but hassomeaddedflexibility. If this makesyou uncomfortable,don't worry. Justimaginethat it's
an array and you'll be in good shape.

ThetargetEntityvaluein thedecoratorusedabovecanreferenceanyentity with avalid namespace,
not just entitiesdefinedin the samenamespace.To relateto anentity definedin adifferent classor
bundle, enter a full namespace as the targetEntity.

Next, sinceeachProduct classcanrelateto exactlyoneCategory object,you'll want to adda$category
property to theProduct class:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Entity/Product.php

// ...
class Product
{

// ...

/**
* @ORM\ManyToOne(targetEntity="Category", inversedBy="products")
* @ORM\JoinColumn(name="category_id", referencedColumnName="id")
*/

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 110

http://sensiolabs.com

Listing 10-32

12
13

protected $category;
}

Finally, now that you'veaddeda new property to both the Category and Product classes,tell Doctrine
to generate the missing getter and setter methods for you:

1 $ php app/console doctrine:generate:entities AppBundle

Ignore the Doctrine metadatafor a moment. You now havetwo classes- Category and Product with a
naturalone-to-manyrelationship.TheCategory classholdsanarrayof Product objectsandthe Product
objectcanhold oneCategory object. In other words- you'vebuilt your classesin awaythat makessense
for your needs. The fact that the data needs to be persisted to a database is always secondary.

Now, look at the metadataabovethe $category property on the Product class.The information here
tells Doctrine that the relatedclassis Category and that it should store the id of the categoryrecord
on a category_id field that liveson the product table. In other words, the relatedCategory objectwill
be stored on the $category property, but behind the scenes,Doctrine will persist this relationship by
storing the category's id value on acategory_id column of theproduct table.

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 111

http://sensiolabs.com

Listing 10-33

Listing 10-34

The metadataabovethe $products property of the Category object is lessimportant, and simply tells
Doctrine to look at theProduct.category property to figure out how the relationship is mapped.

Beforeyou continue,besureto tell Doctrine to add the new category table,and product.category_id
column, and new foreign key:

1 $ php app/console doctrine:schema:update --force

This task should only be really used during development. For a more robust method of
systematically updating your production database, read aboutmigrations15.

Saving Related Entities

Now you can see this new code in action! Imagine you're inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// ...

use AppBundle\Entity\Category ;
use AppBundle\Entity\Product ;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{

public function createProductAction ()
{

$category = new Category();
$category->setName('Main Products');

$product = new Product();
$product->setName('Foo');
$product->setPrice (19.99);
$product->setDescription ('Lorem ipsum dolor');
// relate this product to the category
$product->setCategory($category);

$em= $this ->getDoctrine () ->getManager();
$em->persist ($category);
$em->persist ($product);
$em->flush ();

return new Response(
'Created product id: ' . $product->getId ()
. ' and category id: ' . $category->getId ()

);
}

}

Now, asinglerow isaddedto both thecategory andproduct tables.Theproduct.category_id column
for the newproduct is setto whateverthe id is of the newcategory.Doctrine managesthe persistenceof
this relationship for you.

15. https://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 112

http://sensiolabs.com

Listing 10-35

Listing 10-36

Fetching Related Objects

When you needto fetch associatedobjects,your workflow looks just like it did before.First, fetch a
$product object and then access its relatedCategory:

1
2
3
4
5
6
7
8
9

10

public function showAction($id)
{

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->find ($id);

$categoryName= $product->getCategory() ->getName();

// ...
}

In this example,you first query for a Product object basedon the product's id . This issuesa query for
just the product dataand hydratesthe $product object with that data.Later, when you call $product-
>getCategory()->getName() , Doctrine silentlymakesasecondqueryto find theCategory that'srelated
to this Product. It prepares the$category object and returns it to you.

What's important is the fact that you haveeasyaccessto the product'srelatedcategory,but the category
data isn't actually retrieved until you ask for the category (i.e. it's "lazily loaded").

You can also query in the other direction:

1
2
3
4
5
6
7
8
9

10

public function showProductsAction($id)
{

$category = $this ->getDoctrine ()
->getRepository ('AppBundle:Category')
->find ($id);

$products = $category->getProducts ();

// ...
}

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 113

http://sensiolabs.com

Listing 10-37

Listing 10-38

In this case,the samethings occurs:you first queryout for a singleCategory object, and then Doctrine
makesasecondqueryto retrievethe relatedProduct objects,but only once/if you askfor them(i.e.when
you call ->getProducts()). The $products variableis an arrayof all Product objectsthat relateto the
givenCategory object via theircategory_id value.

Relationships and Proxy Classes

This "lazy loading" is possiblebecause,whennecessary,Doctrine returnsa "proxy" object in place
of the true object. Look again at the above example:

1
2
3
4
5
6
7
8
9

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->find ($id);

$category = $product->getCategory();

// prints "Proxies\AppBundleEntityCategoryProxy"
dump(get_class ($category));
die ();

This proxy object extends the true Category object, and looks and acts exactly like it. The
differenceis that, by usinga proxy object,Doctrine candelayqueryingfor the realCategory data
until you actually need that data (e.g. until you call$category->getName()).

The proxy classesaregeneratedby Doctrine and storedin the cachedirectory. And though you'll
probablyneverevennotice that your $category object is actuallya proxy object, it's important to
keep it in mind.

In the next section, when you retrieve the product and categorydata all at once (via a join),
Doctrine will return thetrue Category object, since nothing needs to be lazily loaded.

Joining Related Records

In the aboveexamples,two queriesweremade- onefor the original object (e.g.a Category) andonefor
the related object(s) (e.g. theProduct objects).

Remember that you can see all of the queries made during a request via the web debug toolbar.

Of course,if you know up front that you'll needto accessboth objects,you canavoid the secondquery
by issuing a join in the original query. Add the following method to theProductRepository class:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Entity/ProductRepository.php
public function findOneByIdJoinedToCategory($id)
{

$query = $this ->getEntityManager ()
->createQuery(

'SELECT p, c FROM AppBundle:Product p
JOIN p.category c
WHERE p.id = :id'

) ->setParameter('id' , $id);

try {
return $query->getSingleResult ();

} catch (\Doctrine\ORM\NoResultException $e) {

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 114

http://sensiolabs.com

Listing 10-39

Listing 10-40

14
15
16

return null ;
}

}

Now, you canusethis method in your controller to query for a Product objectand its relatedCategory
with just one query:

1
2
3
4
5
6
7
8
9

10

public function showAction($id)
{

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->findOneByIdJoinedToCategory($id);

$category = $product->getCategory();

// ...
}

More Information on Associations

This section has been an introduction to one common type of entity relationship, the one-to-many
relationship.For moreadvanceddetailsandexamplesof how to useother typesof relations(e.g.one-to-
one, many-to-many), see Doctrine'sAssociation Mapping Documentation16.

If you'reusingannotations,you'll needto prependall annotationswith ORM\(e.g.ORM\OneToMany),
which is not reflected in Doctrine's documentation. You'll also need to include the use
Doctrine\ORM\Mapping as ORM;statement, whichimportsthe ORMannotations prefix.

Configuration
Doctrine is highly configurable,though you probablywon't everneedto worry aboutmostof its options.
To find out more about configuring Doctrine, see the Doctrine section of theconfig reference.

Lifecycle Callbacks
Sometimes,you needto perform an action right beforeor afteran entity is inserted,updated,or deleted.
Thesetypesof actionsareknown as"lifecycle" callbacks,asthey'recallbackmethodsthat you needto
executeduring different stagesof the lifecycleof an entity (e.g. the entity is inserted,updated,deleted,
etc).

If you're using annotations for your metadata,start by enabling the lifecycle callbacks.This is not
necessary if you're using YAML or XML for your mapping.

1
2
3
4
5

/**
* @ORM\Entity()
* @ORM\HasLifecycleCallbacks()
*/

class Product

16. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 115

http://sensiolabs.com

Listing 10-41

6
7
8

{
// ...

}

Now, you can tell Doctrine to executea method on any of the availablelifecycleevents.For example,
supposeyou want to set a createdAt date column to the current date, only when the entity is first
persisted (i.e. inserted):

1
2
3
4
5
6
7
8
9

// src/AppBundle/Entity/Product.php

/**
* @ORM\PrePersist
*/

public function setCreatedAtValue()
{

$this ->createdAt = new \DateTime();
}

The aboveexampleassumesthat you'vecreatedand mappeda createdAt property (not shown
here).

Now, right before the entity is first persisted,Doctrine will automatically call this method and the
createdAt field will be set to the current date.

Thereareseveralother lifecycleeventsthat you canhook into. For more information on other lifecycle
events and lifecycle callbacks in general, see Doctrine'sLifecycle Events documentation17.

Lifecycle Callbacks and Event Listeners

Notice that the setCreatedAtValue() method receivesno arguments.This is always the case
for lifecycle callbacksand is intentional: lifecycle callbacksshould be simple methods that are
concernedwith internally transforming data in the entity (e.g. setting a created/updated field,
generating a slug value).

If you needto do someheavierlifting - like performing loggingor sendingan email - you should
registeran externalclassasan eventlisteneror subscriberand giveit accessto whateverresources
you need. For more information, seeHow to Register Event Listeners and Subscribers.

Doctrine Field Types Reference
Doctrine comeswith numerousfield typesavailable.Eachof thesemapsa PHPdata type to a specific
column typein whateverdatabaseyou'reusing.For eachfield type, theColumncanbeconfiguredfurther,
setting the length , nullable behavior,nameand other options. To seea list of all availabletypesand
more information, see Doctrine'sMapping Types documentation18.

17. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#lifecycle-events

18. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 116

http://sensiolabs.com

Summary
With Doctrine, you canfocuson your objectsandhow they'reusedin your applicationandworry about
databasepersistencesecond.This is becauseDoctrine allowsyou to useanyPHPobjectto hold your data
and relies on mapping metadata information to map an object's data to a particular database table.

And eventhough Doctrine revolvesaround a simple concept, it's incredibly powerful, allowing you to
createcomplex queriesand subscribeto eventsthat allow you to take different actions as objectsgo
through their persistence lifecycle.

Learn more

For more information about Doctrine, seethe Doctrine section of the cookbook. Someuseful articles
might be:

¥ How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc.
¥ Console Commands
¥ DoctrineFixturesBundle19

¥ DoctrineMongoDBBundle20

19. https://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html

20. https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

PDF brought to you by
generated on September 25, 2015

Chapter 10: Databases and Doctrine | 117

http://sensiolabs.com

Chapter 11

Databases and Propel

Propelisanopen-sourceObject-RelationalMapping (ORM) for PHPwhich implementstheActiveRecord
pattern1. It allows you to accessyour databaseusinga setof objects,providing a simpleAPI for storing
and retrievingdata.PropelusesPDO asan abstractionlayerand codegenerationto removethe burden
of runtime introspection.

A few yearsago,Propelwasa verypopular alternativeto Doctrine. However, its popularity hasrapidly
declinedandthat'swhy theSymfonybook no longerincludesthePropeldocumentation.Readtheofficial
PropelBundle documentation2 to learn how to integrate Propel into your Symfony projects.

1. https://en.wikipedia.org/wiki/Active_record_pattern

2. https://github.com/propelorm/PropelBundle/blob/1.4/Resources/doc/index.markdown

PDF brought to you by
generated on September 25, 2015

Chapter 11: Databases and Propel | 118

http://sensiolabs.com

Listing 12-1

Chapter 12

Testing

Wheneveryou write a new line of code,you alsopotentially add new bugs.To build better and more
reliable applications, you should test your code using both functional and unit tests.

The PHPUnit Testing Framework
Symfonyintegrateswith an independentlibrary - calledPHPUnit - to giveyou a rich testingframework.
This chapter won't cover PHPUnit itself, but it has its own excellentdocumentation1.

It's recommendedto use the latest stablePHPUnit version (you will haveto useversion4.2 or
higher to test the Symfony core code itself).

Eachtest - whether it's a unit test or a functional test - is a PHP classthat should live in the Tests/
subdirectoryof your bundles.If you follow this rule, then you canrun all of your application'stestswith
the following command:

1
2

specify the configuration directory on the command line
$ phpunit -c app/

The -c option tells PHPUnit to look in the app/ directory for a configuration file. If you'recuriousabout
the PHPUnit options, check out theapp/phpunit.xml.dist file.

Codecoveragecanbe generatedwith the --coverage-* options, seethe help information that is
shown when using--help for more information.

1. http://phpunit.de/manual/current/en/

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 119

http://sensiolabs.com

Listing 12-2

Listing 12-3

Listing 12-4

Unit Tests
A unit test is a testagainsta singlePHPclass,alsocalleda unit. If you want to testthe overallbehaviorof
your application, see the section aboutFunctional Tests.

Writing Symfony unit tests is no different from writing standard PHPUnit unit tests. Suppose,for
example,that you havean incrediblysimple classcalledCalculator in the Util/ directory of the app
bundle:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Util/Calculator.php
namespaceAppBundle\Util ;

class Calculator
{

public function add($a, $b)
{

return $a + $b;
}

}

To test this, create aCalculatorTest file in theTests/Util directory of your bundle:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Tests/Util/CalculatorTest.php
namespaceAppBundle\Tests\Util ;

use AppBundle\Util\Calculator ;

class CalculatorTest extends \PHPUnit_Framework_TestCase
{

public function testAdd()
{

$calc = new Calculator ();
$result = $calc ->add(30, 12);

// assert that your calculator added the numbers correctly!
$this ->assertEquals (42, $result);

}
}

By convention, the Tests/ sub-directoryshould replicate the directory of your bundle for unit
tests.So,if you'retestinga classin your bundle'sUtil/ directory, put the test in the Tests/ Util/
directory.

Justlike in your realapplication- autoloadingis automaticallyenabledvia the bootstrap.php.cache file
(as configured by default in theapp/phpunit.xml.dist file).

Running tests for a given file or directory is also very easy:

1
2
3
4
5
6
7
8

run all tests of the application
$ phpunit -c app

run all tests in the Util directory
$ phpunit -c app src/AppBundle/Tests/Util

run tests for the Calculator class
$ phpunit -c app src/AppBundle/Tests/Util/CalculatorTest.php

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 120

http://sensiolabs.com

Listing 12-5

9
10
11

run all tests for the entire Bundle
$ phpunit -c app src/AppBundle/

Functional Tests
Functional testscheckthe integration of the different layersof an application (from the routing to the
views).Theyareno different from unit testsasfar asPHPUnit is concerned,but theyhavea veryspecific
workflow:

¥ Make a request;
¥ Test the response;
¥ Click on a link or submit a form;
¥ Test the response;
¥ Rinse and repeat.

Your First Functional Test

Functional tests are simple PHP files that typically live in the Tests/ Controller directory of your
bundle. If you want to test the pageshandled by your PostController class,start by creatinga new
PostControllerTest.php file that extends a specialWebTestCaseclass.

As an example, a test could look like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/AppBundle/Tests/Controller/PostControllerTest.php
namespaceAppBundle\Tests\Controller ;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class PostControllerTest extends WebTestCase
{

public function testShowPost()
{

$client = static :: createClient ();

$crawler = $client ->request ('GET', '/post/hello-world');

$this ->assertGreaterThan(
0,
$crawler ->filter ('html:contains("Hello World")') ->count()

);
}

}

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 121

http://sensiolabs.com

Listing 12-6

Listing 12-7

Listing 12-8

Listing 12-9

To run your functional tests,the WebTestCaseclassbootstrapsthe kernel of your application. In
most cases,this happensautomatically. However, if your kernel is in a non-standarddirectory,
you'll needto modify your phpunit.xml.dist file to setthe KERNEL_DIRenvironmentvariableto
the directory of your kernel:

1
2
3
4
5
6
7

<?xml version="1.0" charset="utf-8" ?>
<phpunit>

<php>
<server name="KERNEL_DIR"value="/path/to/your/app/" />

</php>
<!-- ... -->

</phpunit>

The createClient() method returns a client, which is like a browser that you'll use to crawl your site:

1 $crawler = $client ->request ('GET', '/post/hello-world');

The request() method (read moreabout the requestmethod) returns a Crawler2 object which can be
used to select elements in the response, click on links and submit forms.

The Crawler only works when the responseis an XML or an HTML document.To get the raw
content response, call$client->getResponse()->getContent() .

Click on a link by first selectingit with the crawler using either an XPathexpressionor a CSSselector,
then use the client to click on it. For example:

1
2
3
4
5
6
7

$link = $crawler
->filter ('a:contains("Greet")') // find all links with the text "Greet"
->eq(1) // select the second link in the list
->link () // and click it

;

$crawler = $client ->click ($link);

Submittinga form is verysimilar: selecta form button, optionally overridesomeform valuesandsubmit
the corresponding form:

1
2
3
4
5
6
7
8

$form = $crawler ->selectButton ('submit') ->form();

// set some values
$form['name'] = 'Lucas' ;
$form['form_name[subject]'] = 'Hey there!' ;

// submit the form
$crawler = $client ->submit($form);

The form canalsohandleuploadsandcontainsmethodsto fill in different typesof form fields(e.g.
select() and tick()). For details, see theFormssection below.

2. http://api.symfony.com/2.6/Symfony/Component/DomCrawler/Crawler.html

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 122

http://sensiolabs.com

Listing 12-10

Listing 12-11

Now that you caneasilynavigatethrough an application,useassertionsto test that it actuallydoeswhat
you expect it to. Use the Crawler to make assertions on the DOM:

1
2

// Assert that the response matches a given CSS selector.
$this ->assertGreaterThan(0, $crawler ->filter ('h1') ->count());

Or testagainstthe responsecontentdirectly if you just want to assertthat the contentcontainssometext
or in case that the response is not an XML/HTML document:

1
2
3
4

$this ->assertContains (
'Hello World' ,
$client ->getResponse() ->getContent()

);

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 123

http://sensiolabs.com

Listing 12-12

Listing 12-13

Useful Assertions

To get you started faster, here is a list of the most common and useful test assertions:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

use Symfony\Component\HttpFoundation\Response;

// ...

// Assert that there is at least one h2 tag
// with the class "subtitle"
$this ->assertGreaterThan(

0,
$crawler ->filter ('h2.subtitle') ->count()

);

// Assert that there are exactly 4 h2 tags on the page
$this ->assertCount(4, $crawler ->filter ('h2'));

// Assert that the "Content-Type" header is "application/json"
$this ->assertTrue (

$client ->getResponse() ->headers->contains (
'Content-Type' ,
'application/json'

)
);

// Assert that the response content contains a string
$this ->assertContains ('foo' , $client ->getResponse() ->getContent());
// ...or matches a regex
$this ->assertRegExp('/foo(bar)?/' , $client ->getResponse() ->getContent());

// Assert that the response status code is 2xx
$this ->assertTrue ($client ->getResponse() ->isSuccessful ());
// Assert that the response status code is 404
$this ->assertTrue ($client ->getResponse() ->isNotFound());
// Assert a specific 200 status code
$this ->assertEquals (

200, // or Symfony\Component\HttpFoundation\Response::HTTP_OK
$client ->getResponse() ->getStatusCode()

);

// Assert that the response is a redirect to /demo/contact
$this ->assertTrue (

$client ->getResponse() ->isRedirect ('/demo/contact')
);
// ...or simply check that the response is a redirect to any URL
$this ->assertTrue ($client ->getResponse() ->isRedirect ());

New in version 2.4:Support for HTTP status code constants was introduced in Symfony 2.4.

Working with the Test Client
The test client simulates an HTTP client like a browser and makes requests into your Symfony
application:

1 $crawler = $client ->request ('GET', '/post/hello-world');

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 124

http://sensiolabs.com

Listing 12-14

Listing 12-15

Listing 12-16

The request() method takes the HTTP method and a URL as argumentsand returns a Crawler
instance.

Hardcodingthe requestURLsis abestpracticefor functional tests.If the testgeneratesURLsusing
the Symfonyrouter, it won't detectany changemadeto the application URLswhich may impact
the end users.

More about therequest() Method:

The full signature of therequest() method is:

1
2
3
4
5
6
7
8
9

request (
$method,
$uri ,
array $parameters = array (),
array $files = array (),
array $server = array (),
$content = null ,
$changeHistory = true

)

The server array is the raw valuesthat you'd expect to normally find in the PHP $_SERVER3

superglobal. For example, to set the Content-Type, Referer and X-Requested-With HTTP
headers, you'd pass the following (mind theHTTP_prefix for non standard headers):

1
2
3
4
5
6
7
8
9

10
11

$client ->request (
'GET',
'/post/hello-world' ,
array (),
array (),
array (

'CONTENT_TYPE' => 'application/json' ,
'HTTP_REFERER' => '/foo/bar' ,
'HTTP_X-Requested-With' => 'XMLHttpRequest',

)
);

Usethe crawlerto find DOM elementsin the response.Theseelementscanthen beusedto click on links
and submit forms:

1
2
3
4
5

$link = $crawler ->selectLink ('Go elsewhere...') ->link ();
$crawler = $client ->click ($link);

$form = $crawler ->selectButton ('validate') ->form();
$crawler = $client ->submit($form, array ('name' => 'Fabien'));

The click() and submit() methodsboth return a Crawler object. Thesemethodsarethe bestway to
browseyour application asit takescareof a lot of things for you, like detectingthe HTTP method from
a form and giving you a nice API for uploading files.

3. http://php.net/manual/en/reserved.variables.server.php

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 125

http://sensiolabs.com

Listing 12-17

Listing 12-18

Listing 12-19

You will learn more about theLink andFormobjects in theCrawlersection below.

The request method canalsobe usedto simulateform submissionsdirectly or perform more complex
requests. Some useful examples:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// Directly submit a form (but using the Crawler is easier!)
$client ->request ('POST', '/submit' , array ('name' => 'Fabien'));

// Submit a raw JSON string in the request body
$client ->request (

'POST',
'/submit' ,
array (),
array (),
array ('CONTENT_TYPE'=> 'application/json'),
'{"name":"Fabien"}'

);

// Form submission with a file upload
use Symfony\Component\HttpFoundation\File\UploadedFile ;

$photo = new UploadedFile(
'/path/to/photo.jpg' ,
'photo.jpg' ,
'image/jpeg' ,
123

);
$client ->request (

'POST',
'/submit' ,
array ('name' => 'Fabien'),
array ('photo' => $photo)

);

// Perform a DELETE request and pass HTTP headers
$client ->request (

'DELETE',
'/post/12' ,
array (),
array (),
array ('PHP_AUTH_USER'=> 'username' , 'PHP_AUTH_PW'=> 'pa$$word')

);

Last but not least,you can forceeachrequestto be executedin its own PHPprocessto avoid any side-
effects when working with several clients in the same script:

1 $client ->insulate ();

Browsing

The Client supports many operations that can be done in a real browser:

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 126

http://sensiolabs.com

Listing 12-20

Listing 12-21

Listing 12-22

Listing 12-23

1
2
3
4
5
6

$client ->back();
$client ->forward ();
$client ->reload ();

// Clears all cookies and the history
$client ->restart ();

Accessing Internal Objects

New in version 2.3: The getInternalRequest() 4 and getInternalResponse() 5 methods were
introduced in Symfony 2.3.

If you use the client to test your application, you might want to access the client's internal objects:

1
2

$history = $client ->getHistory ();
$cookieJar = $client ->getCookieJar();

You can also get the objects related to the latest request:

1
2
3
4
5
6
7
8
9

10
11
12
13

// the HttpKernel request instance
$request = $client ->getRequest();

// the BrowserKit request instance
$request = $client ->getInternalRequest ();

// the HttpKernel response instance
$response = $client ->getResponse();

// the BrowserKit response instance
$response = $client ->getInternalResponse ();

$crawler = $client ->getCrawler ();

If your requests are not insulated, you can also access theContainer and theKernel :

1
2

$container = $client ->getContainer ();
$kernel = $client ->getKernel ();

Accessing the Container

It's highly recommendedthat a functional test only tests the Response.But under certain very rare
circumstances,you might want to accesssomeinternal objectsto write assertions.In suchcases,you can
access the Dependency Injection Container:

1 $container = $client ->getContainer ();

Bewarned that this doesnot work if you insulate the client or if you usean HTTP layer. For a list of
services available in your application, use thedebug:container console task.

New in version 2.6:Prior to Symfony 2.6, this command was calledcontainer:debug .

4. http://api.symfony.com/2.6/Symfony/Component/BrowserKit/Client.html#getInternalRequest()

5. http://api.symfony.com/2.6/Symfony/Component/BrowserKit/Client.html#getInternalResponse()

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 127

http://sensiolabs.com

Listing 12-24

Listing 12-25

Listing 12-26

Listing 12-27

Listing 12-28

If the information you need to check is available from the profiler, use it instead.

Accessing the Profiler Data

On eachrequest,you canenablethe Symfonyprofiler to collectdataabout the internal handling of that
request.For example,the profiler could be usedto verify that a givenpageexecuteslessthan a certain
number of database queries when loading.

To get the Profiler for the last request, do the following:

1
2
3
4
5
6
7

// enable the profiler for the very next request
$client ->enableProfiler ();

$crawler = $client ->request ('GET', '/profiler');

// get the profile
$profile = $client ->getProfile ();

For specificdetailson usingthe profiler insidea test,seethe How to UsetheProfiler in a FunctionalTest
cookbook entry.

Redirecting

When a requestreturnsa redirectresponse,the client doesnot follow it automatically.You canexamine
the response and force a redirection afterwards with thefollowRedirect() method:

1 $crawler = $client ->followRedirect ();

If you want the client to automatically follow all redirects, you can force him with the
followRedirects() method:

1 $client ->followRedirects ();

If you passfalse to the followRedirects() method, the redirects will no longer be followed:

1 $client ->followRedirects (false);

The Crawler
A Crawler instanceis returned eachtime you makea requestwith the Client. It allows you to traverse
HTML documents, select nodes, find links and forms.

Traversing

Like jQuery, the Crawlerhasmethodsto traversethe DOM of an HTML/ XML document.For example,
the following finds all input[type=submit] elements,selectsthe last one on the page,and then selects
its immediate parent element:

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 128

http://sensiolabs.com

Listing 12-29

1
2
3
4
5

$newCrawler = $crawler ->filter ('input[type=submit]')
->last ()
->parents ()
->first ()

;

Many other methods are also available:
filter('h1.title')filter('h1.title')

Nodes that match the CSS selector.

filterXpath('h1')filterXpath('h1')
Nodes that match the XPath expression.

eq(1)eq(1)
Node for the specified index.

first()first()
First node.

last()last()
Last node.

siblings()siblings()
Siblings.

nextAll()nextAll()
All following siblings.

previousAll()previousAll()
All preceding siblings.

parents()parents()
Returns the parent nodes.

children()children()
Returns children nodes.

reduce($lambda)reduce($lambda)
Nodes for which the callable does not return false.

Sinceeachof thesemethodsreturnsa new Crawler instance,you cannarrow down your nodeselection
by chaining the method calls:

1
2
3
4
5
6
7
8
9

$crawler
->filter ('h1')
->reduce(function ($node, $i) {

if (! $node->getAttribute ('class')) {
return false ;

}
})
->first ()

;

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 129

http://sensiolabs.com

Listing 12-30

Listing 12-31

Listing 12-32

Listing 12-33

Use thecount() function to get the number of nodes stored in a Crawler:count($crawler)

Extracting Information

The Crawler can extract information from the nodes:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// Returns the attribute value for the first node
$crawler ->attr ('class');

// Returns the node value for the first node
$crawler ->text ();

// Extracts an array of attributes for all nodes
// (_text returns the node value)
// returns an array for each element in crawler,
// each with the value and href
$info = $crawler ->extract (array ('_text' , 'href'));

// Executes a lambda for each node and return an array of results
$data = $crawler ->each(function ($node, $i) {

return $node->attr ('href');
});

Links

To select links, you can use the traversing methods above or the convenientselectLink() shortcut:

1 $crawler ->selectLink ('Click here');

This selectsall links that contain the giventext, or clickableimagesfor which the alt attribute contains
the given text. Like the other filtering methods, this returns anotherCrawler object.

Onceyou'veselecteda link, you haveaccessto a specialLink object,which hashelpful methodsspecific
to links (suchasgetMethod() andgetUri()). To click on the link, usethe Client'sclick() methodand
pass it aLink object:

1
2
3

$link = $crawler ->selectLink ('Click here') ->link ();

$client ->click ($link);

Forms

Formscanbeselectedusingtheir buttons, which canbeselectedwith the selectButton() method, just
like links:

1 $buttonCrawlerNode = $crawler ->selectButton ('submit');

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 130

http://sensiolabs.com

Listing 12-34

Listing 12-35

Listing 12-36

Listing 12-37

Listing 12-38

Listing 12-39

Listing 12-40

Notice that you selectform buttons and not forms asa form canhaveseveralbuttons; if you use
the traversing API, keep in mind that you must look for a button.

The selectButton() method canselectbutton tagsand submit input tags.It usesseveralparts of the
buttons to find them:

¥ The value attribute value;
¥ The id or alt attribute value for images;
¥ The id or nameattribute value forbutton tags.

Once you havea Crawler representinga button, call the form() method to get a Forminstancefor the
form wrapping the button node:

1 $form = $buttonCrawlerNode->form();

When calling the form() method, you can also passan array of field valuesthat overridesthe default
ones:

1
2
3
4

$form = $buttonCrawlerNode->form(array (
'name' => 'Fabien' ,
'my_form[subject]' => 'Symfony rocks!' ,

));

And if you want to simulate a specific HTTP method for the form, pass it as a second argument:

1 $form = $buttonCrawlerNode->form(array (), 'DELETE');

The Client can submitForminstances:

1 $client ->submit($form);

The field values can also be passed as a second argument of thesubmit() method:

1
2
3
4

$client ->submit($form, array (
'name' => 'Fabien' ,
'my_form[subject]' => 'Symfony rocks!' ,

));

For more complex situations, use theForminstance as an array to set the value of each field individually:

1
2
3

// Change the value of a field
$form['name'] = 'Fabien' ;
$form['my_form[subject]'] = 'Symfony rocks!' ;

There is also a nice API to manipulate the values of the fields according to their type:

1
2
3
4
5
6

// Select an option or a radio
$form['country'] ->select ('France');

// Tick a checkbox
$form['like_symfony'] ->tick ();

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 131

http://sensiolabs.com

Listing 12-41

Listing 12-42

Listing 12-43

Listing 12-44

7
8

// Upload a file
$form['photo'] ->upload('/path/to/lucas.jpg');

If you purposefully want to select "invalid" select/radio values, seeSelecting Invalid Choice Values.

You can get the valuesthat will be submitted by calling the getValues() method on the Form
object. The uploaded files are available in a separatearray returned by getFiles() . The
getPhpValues() and getPhpFiles() methodsalso return the submitted values,but in the PHP
format (it converts the keys with squarebracketsnotation - e.g. my_form[subject] - to PHP
arrays).

Testing Configuration
The Client used by functional tests createsa Kernel that runs in a special test environment. Since
Symfonyloadsthe app/config/ config_test.yml in the test environment,you cantweak any of your
application's settings specifically for testing.

For example, by default, the Swift Mailer is configured to not actually deliver emails in the test
environment. You can see this under theswiftmailer configuration option:

1
2
3
4
5

app/config/config_test.yml

...
swiftmailer :

disable_delivery : true

You canalsousea different environmententirely, or overridethe default debugmode(true) by passing
each as options to thecreateClient() method:

1
2
3
4

$client = static :: createClient (array (
'environment' => 'my_test_env' ,
'debug' => false ,

));

If your application behavesaccording to someHTTP headers,passthem as the secondargument of
createClient() :

1
2
3
4

$client = static :: createClient (array (), array (
'HTTP_HOST' => 'en.example.com' ,
'HTTP_USER_AGENT'=> 'MySuperBrowser/1.0' ,

));

You can also override HTTP headers on a per request basis:

1
2
3
4

$client ->request ('GET', '/' , array (), array (), array (
'HTTP_HOST' => 'en.example.com' ,
'HTTP_USER_AGENT'=> 'MySuperBrowser/1.0' ,

));

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 132

http://sensiolabs.com

Listing 12-45

Listing 12-46

Listing 12-47

The test client is availableasa servicein the container in the test environment(or whereverthe
framework.testoption is enabled). This means you can override the service entirely if you need to.

PHPUnit Configuration

Eachapplicationhasits own PHPUnit configuration,storedin the app/phpunit.xml.dist file. You can
edit this file to changethe defaultsor createan app/phpunit.xml file to setup a configuration for your
local machine only.

Storethe app/phpunit.xml.dist file in your code repository and ignore the app/phpunit.xml
file.

By default, only the tests from your own custom bundles stored in the standard directories src/ */
*Bundle/ Tests, src/ */ Bundle/*Bundle/ Tests, src/ *Bundle/ Tests arerun by thephpunit command,
as configured in theapp/phpunit.xml.dist file:

1
2
3
4
5
6
7
8
9

10
11
12

<!-- app/phpunit.xml.dist -->
<phpunit>

<!-- ... -->
<testsuites>

<testsuite name="Project Test Suite" >
<directory> ../src/*/*Bundle/Tests </directory>
<directory> ../src/*/Bundle/*Bundle/Tests </directory>
<directory> ../src/*Bundle/Tests </directory>

</testsuite>
</testsuites>
<!-- ... -->

</phpunit>

But you can easilyadd more directories.For instance,the following configuration adds tests from a
customlib/tests directory:

1
2
3
4
5
6
7
8
9

10
11

<!-- app/phpunit.xml.dist -->
<phpunit>

<!-- ... -->
<testsuites>

<testsuite name="Project Test Suite" >
<!-- ... --->
<directory> ../lib/tests </directory>

</testsuite>
</testsuites>
<!-- ... --->

</phpunit>

To include other directories in the code coverage, also edit the<filter> section:

1
2
3
4
5
6

<!-- app/phpunit.xml.dist -->
<phpunit>

<!-- ... -->
<filter>

<whitelist>
<!-- ... -->

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 133

http://sensiolabs.com

7
8
9

10
11
12
13
14
15

<directory> ../lib </directory>
<exclude>

<!-- ... -->
<directory> ../lib/tests </directory>

</exclude>
</whitelist>

</filter>
<!-- ... --->

</phpunit>

Learn more
¥ The chapter about tests in the Symfony Framework Best Practices
¥ The DomCrawler Component
¥ The CssSelector Component
¥ How to Simulate HTTP Authentication in a Functional Test
¥ How to Test the Interaction of several Clients
¥ How to Use the Profiler in a Functional Test
¥ How to Customize the Bootstrap Process before Running Tests

PDF brought to you by
generated on September 25, 2015

Chapter 12: Testing | 134

http://sensiolabs.com

Listing 13-1

Listing 13-2

Chapter 13

Validation

Validation is a verycommontask in webapplications.Dataenteredin forms needsto bevalidated.Data
also needs to be validated before it is written into a database or passed to a web service.

Symfonyshipswith a Validator1 componentthat makesthis taskeasyand transparent.This component
is based on theJSR303 Bean Validation specification2.

The Basics of Validation
The bestway to understandvalidation is to seeit in action. To start, supposeyou'vecreateda plain-old-
PHP object that you need to use somewhere in your application:

1
2
3
4
5
6
7

// src/AppBundle/Entity/Author.php
namespaceAppBundle\Entity ;

class Author
{

public $name;
}

So far, this is just an ordinary classthat servessome purpose inside your application. The goal of
validation is to tell you if the data of an object is valid. For this to work, you'll configurea list of rules
(called constraints) that the object must follow in order to be valid. Theserules can be specifiedvia a
number of different formats (YAML, XML, annotations, or PHP).

For example, to guarantee that the$nameproperty is not empty, add the following:

1
2
3
4
5

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

1. https://github.com/symfony/Validator

2. http://jcp.org/en/jsr/detail?id=303

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 135

http://sensiolabs.com

Listing 13-3

Listing 13-4

6
7
8
9

10
11
12

class Author
{

/**
* @Assert\NotBlank()
*/

public $name;
}

Protectedand privatepropertiescanalsobe validated,aswell as"getter"methods(seeConstraint
Targets).

Using thevalidator Service

Next, to actually validatean Author object, usethe validate method on the validator service(class
Validator 3). The job of the validator is easy:to read the constraints(i.e. rules) of a classand verify
if the data on the object satisfiesthoseconstraints.If validation fails, a non-empty list of errors (class
ConstraintViolationList 4) is returned. Take this simple example from inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// ...
use Symfony\Component\HttpFoundation\Response;
use AppBundle\Entity\Author ;

// ...
public function authorAction ()
{

$author = new Author();

// ... do something to the $author object

$validator = $this ->get('validator');
$errors = $validator ->validate ($author);

if (count($errors) > 0) {
/*
* Uses a __toString method on the $errors variable which is a
* ConstraintViolationList object. This gives us a nice string
* for debugging.
*/

$errorsString = (string) $errors ;

return new Response($errorsString);
}

return new Response('The author is valid! Yes!');
}

If the $nameproperty is empty, you will see the following error message:

1
2

AppBundle\Author.name:
This value should not be blank

3. http://api.symfony.com/2.6/Symfony/Component/Validator/Validator.html

4. http://api.symfony.com/2.6/Symfony/Component/Validator/ConstraintViolationList.html

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 136

http://sensiolabs.com

Listing 13-5

Listing 13-6

Listing 13-7

If you insert a value into thenameproperty, the happy success message will appear.

Most of the time, you won't interact directly with the validator serviceor needto worry about
printing out the errors.Most of the time, you'll usevalidation indirectly whenhandling submitted
form data. For more information, see theValidation and Forms.

You could also pass the collection of errors into a template:

1
2
3
4
5

if (count($errors) > 0) {
return $this ->render('author/validation.html.twig' , array (

'errors' => $errors ,
));

}

Inside the template, you can output the list of errors exactly as needed:

1
2
3
4
5
6
7

{# app/Resources/views/author/validation.html.twig #}
<h3>The author has the following errors </h3>

{% for error in errors %}

 {{ error.message }}
{% endfor %}

Eachvalidation error (calleda "constraint violation"), is representedby a ConstraintViolation 5

object.

Validation and Forms

The validator servicecan be used at any time to validate any object. In reality, however, you'll
usuallywork with the validator indirectly when working with forms. Symfony'sform library usesthe
validator serviceinternally to validate the underlying object after valueshave been submitted. The
constraint violations on the object are convertedinto FieldError objectsthat can easilybe displayed
with your form. The typical form submission workflow looks like the following from inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// ...
use AppBundle\Entity\Author ;
use AppBundle\Form\AuthorType;
use Symfony\Component\HttpFoundation\Request;

// ...
public function updateAction (Request $request)
{

$author = new Author();
$form = $this ->createForm(new AuthorType(), $author);

$form->handleRequest($request);

if ($form->isValid ()) {
// the validation passed, do something with the $author object

5. http://api.symfony.com/2.6/Symfony/Component/Validator/ConstraintViolation.html

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 137

http://sensiolabs.com

Listing 13-8

17
18
19
20
21
22
23

return $this ->redirectToRoute (...);
}

return $this ->render('author/form.html.twig' , array (
'form' => $form->createView(),

));
}

This example uses anAuthorTypeform class, which is not shown here.

For more information, see theFormschapter.

Configuration
The Symfonyvalidator is enabledby default, but you must explicitly enableannotationsif you'reusing
the annotation method to specify your constraints:

1
2
3

app/config/config.yml
framework:

validation : { enable_annotations : true }

Constraints
The validator is designedto validate objects againstconstraints(i.e. rules). In order to validate an
object, simply map one or more constraints to its class and then pass it to thevalidator service.

Behind the scenes,a constraint is simply a PHP object that makesan assertivestatement.In real life,
a constraint could be: "The cake must not be burned". In Symfony,constraintsare similar: they are
assertionsthat a condition is true. Given a value,a constraint will tell you if that valueadheresto the
rules of the constraint.

Supported Constraints

Symfony packages many of the most commonly-needed constraints:

Basic Constraints

Thesearethe basicconstraints:usethem to assertverybasicthings about the valueof propertiesor the
return value of methods on your object.

¥ NotBlank
¥ Blank
¥ NotNull
¥ Null
¥ True
¥ False
¥ Type

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 138

http://sensiolabs.com

String Constraints

¥ Email
¥ Length
¥ Url
¥ Regex
¥ Ip
¥ Uuid

Number Constraints

¥ Range

Comparison Constraints

¥ EqualTo
¥ NotEqualTo
¥ IdenticalTo
¥ NotIdenticalTo
¥ LessThan
¥ LessThanOrEqual
¥ GreaterThan
¥ GreaterThanOrEqual

Date Constraints

¥ Date
¥ DateTime
¥ Time

Collection Constraints

¥ Choice
¥ Collection
¥ Count
¥ UniqueEntity
¥ Language
¥ Locale
¥ Country

File Constraints

¥ File
¥ Image

Financial and other Number Constraints

¥ CardScheme
¥ Currency
¥ Luhn
¥ Iban
¥ Isbn
¥ Issn

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 139

http://sensiolabs.com

Listing 13-9

Listing 13-10

Other Constraints

¥ Callback
¥ Expression
¥ All
¥ UserPassword
¥ Valid

You canalsocreateyour own customconstraints.This topic is coveredin the "How to Createa custom
Validation Constraint" article of the cookbook.

Constraint Configuration

Someconstraints, like NotBlank, are simple whereasothers, like the Choiceconstraint, have several
configuration options available.Supposethat the Author classhasanotherproperty calledgender that
can be set to either "male", "female" or "other":

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**
* @Assert\Choice(
* choices = { "male", "female", "other" },
* message = "Choose a valid gender."
*)
*/

public $gender;

// ...
}

The options of a constraint canalwaysbe passedin asan array.Someconstraints,however,alsoallow
you to passthe valueof one,"default", option in placeof the array.In the caseof the Choice constraint,
the choices options can be specified in this way.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**
* @Assert\Choice({"male", "female", "other"})
*/

protected $gender;

// ...
}

This is purely meantto makethe configuration of the most common option of a constraint shorterand
quicker.

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 140

http://sensiolabs.com

Listing 13-11

Listing 13-12

If you'reeverunsureof how to specifyan option, either checkthe API documentationfor the constraint
or play it safe by always passing in an array of options (the first method shown above).

Translation Constraint Messages
For information on translating the constraint messages, seeTranslating Constraint Messages.

Constraint Targets
Constraintscanbe applied to a classproperty (e.g.name) or a public gettermethod (e.g.getFullName).
The first is the most common and easyto use, but the secondallows you to specifymore complex
validation rules.

Properties

Validatingclasspropertiesis the mostbasicvalidation technique.Symfonyallowsyou to validateprivate,
protectedor public properties.The next listing showsyou how to configurethe $firstName property of
an Author class to have at least 3 characters.

1
2
3
4
5
6
7
8
9

10
11
12
13

// AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**
* @Assert\NotBlank()
* @Assert\Length(min=3)
*/

private $firstName ;
}

Getters

Constraintscanalsobeappliedto the return valueof a method.Symfonyallowsyou to add a constraint
to any public method whosenamestartswith "get", "is" or "has". In this guide, thesetypesof methods
are referred to as "getters".

New in version 2.5:Support for methods starting withhaswas introduced in Symfony 2.5.

The benefit of this technique is that it allows you to validate your object dynamically. For example,
supposeyou want to makesurethat apasswordfield doesn'tmatchthe first nameof theuser(for security
reasons).You cando this by creatingan isPasswordLegal method,and then assertingthat this method
must returntrue :

1
2
3
4
5
6
7

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 141

http://sensiolabs.com

Listing 13-13

Listing 13-14

8
9

10
11
12
13
14
15

/**
* @Assert\True(message = "The password cannot match your first name")
*/

public function isPasswordLegal()
{

// ... return true or false
}

}

Now, create theisPasswordLegal() method and include the logic you need:

1
2
3
4

public function isPasswordLegal()
{

return $this ->firstName !== $this ->password;
}

The keen-eyedamongyou will havenoticed that the prefix of the getter ("get", "is" or "has") is
omitted in the mapping.This allowsyou to movethe constraintto a property with the samename
later (or vice versa) without changing your validation logic.

Classes

Someconstraintsapply to the entire classbeing validated. For example,the Callback constraint is a
genericconstraintthat'sappliedto the classitself. When that classis validated,methodsspecifiedby that
constraint are simply executed so that each can provide more custom validation.

Validation Groups
So far, you've been able to add constraints to a classand ask whether or not that classpassesall
the defined constraints. In somecases,however, you'll need to validate an object againstonly some
constraintson that class.To do this, you can organizeeachconstraint into one or more "validation
groups", and then apply validation against just one group of constraints.

For example,supposeyou havea User class,which is usedboth when a userregistersand when a user
updates their contact information later:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

use Symfony\Component\Security\Core\User\UserInterface ;
use Symfony\Component\Validator\Constraints as Assert ;

class User implements UserInterface
{

/**
* @Assert\Email(groups={"registration"})
*/
private $email;

/**
* @Assert\NotBlank(groups={"registration"})
* @Assert\Length(min=7, groups={"registration"})

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 142

http://sensiolabs.com

Listing 13-15

17
18
19
20
21
22
23
24

*/
private $password;

/**
* @Assert\Length(min=2)
*/
private $city ;

}

With this configuration, there are three validation groups:
DefaultDefault

Containstheconstraintsin thecurrentclassandall referencedclassesthat belongto no othergroup.

UserUser
Equivalentto all constraintsof the Userobject in the Default group.This is alwaysthe nameof the
class. The difference between this andDefault is explained below.

registrationregistration
Contains the constraints on theemail andpasswordfields only.

Constraints in the Default group of a classare the constraints that have either no explicit group
configured or that are configured to a group equal to the class name or the stringDefault .

When validating just the Userobject, there is no differencebetweenthe Default group and the
Usergroup.But, thereis adifferenceif Userhasembeddedobjects.For example,imagineUserhas
anaddress property that containssomeAddressobjectandthat you'veaddedthe Valid constraint
to this property so that it's validated when you validate theUserobject.

If you validateUser using the Default group, then any constraintson the Addressclassthat are
in the Default group will beused.But, if you validateUser usingthe User validation group, then
only constraints on theAddressclass with theUsergroup will be validated.

In other words, the Default groupandthe classnamegroup (e.g.User) areidentical,exceptwhen
the class is embedded in another object that's actually the one being validated.

If you haveinheritance(e.g.User extends BaseUser) andyou validatewith the classnameof the
subclass(i.e. User), then all constraintsin the User and BaseUserwill be validated.However, if
you validateusingthe baseclass(i.e. BaseUser), then only the default constraintsin the BaseUser
class will be validated.

To tell the validator to usea specificgroup, passoneor more group namesasthe third argumentto the
validate() method:

1
2
3
4
5

// If you're using the new 2.5 validation API (you probably are!)
$errors = $validator ->validate ($author , null , array ('registration'));

// If you're using the old 2.4 validation API, pass the group names as the second argument
// $errors = $validator->validate($author, array('registration'));

If no groups are specified, all constraints that belong to the groupDefault will be applied.

Of course,you'll usually work with validation indirectly through the form library. For information on
how to use validation groups inside forms, seeValidation Groups.

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 143

http://sensiolabs.com

Listing 13-16

Group Sequence
In somecases,you want to validateyour groupsby steps.To do this, you can usethe GroupSequence
feature.In this case,an object definesa group sequence,which determinesthe order groupsshould be
validated.

For example,supposeyou havea User classand want to validatethat the usernameand the password
are different only if all other validation passes (in order to avoid multiple error messages).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

use Symfony\Component\Security\Core\User\UserInterface ;
use Symfony\Component\Validator\Constraints as Assert ;

/**
* @Assert\GroupSequence({"User", "Strict"})
*/

class User implements UserInterface
{

/**
* @Assert\NotBlank
*/
private $username;

/**
* @Assert\NotBlank
*/
private $password;

/**
* @Assert\True(message="The password cannot match your username", groups={"Strict"})
*/

public function isPasswordLegal()
{

return ($this ->username!== $this ->password);
}

}

In this example,it will first validateall constraintsin the group User (which is the sameasthe Default
group). Only if all constraints in that group are valid, the second group,Strict , will be validated.

As you havealreadyseenin the previoussection,the Default group and the group containingthe
classname(e.g.User) wereidentical. However,when usingGroup Sequences,they areno longer
identical.TheDefault groupwill now referencethe groupsequence,insteadof all constraintsthat
do not belong to any group.

This meansthat you have to use the {ClassName}(e.g. User) group when specifyinga group
sequence.When usingDefault , you getan infinite recursion(asthe Default group referencesthe
groupsequence,which will contain the Default groupwhich referencesthe samegroupsequence,
...).

Group Sequence Providers

Imagine a User entity which can be a normal user or a premium user. When it's a premium user,
someextra constraintsshould be addedto the userentity (e.g. the credit card details).To dynamically

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 144

http://sensiolabs.com

Listing 13-17

Listing 13-18

Listing 13-19

determinewhich groupsshouldbeactivated,you cancreatea Group SequenceProvider.First, createthe
entity and a new constraint group calledPremium:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

use Symfony\Component\Validator\Constraints as Assert ;

class User
{

/**
* @Assert\NotBlank()
*/

private $name;

/**
* @Assert\CardScheme(
* schemes={"VISA"},
* groups={"Premium"},
*)
*/

private $creditCard ;

// ...
}

Now, change the User class to implement GroupSequenceProviderInterface6 and add the
getGroupSequence()7, method, which should return an array of groups to use:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

// ...
use Symfony\Component\Validator\GroupSequenceProviderInterface ;

class User implements GroupSequenceProviderInterface
{

// ...

public function getGroupSequence()
{

$groups = array ('User');

if ($this ->isPremium()) {
$groups[] = 'Premium' ;

}

return $groups;
}

}

At last, you haveto notify the Validator componentthat your User classprovidesa sequenceof groups
to be validated:

6. http://api.symfony.com/2.6/Symfony/Component/Validator/GroupSequenceProviderInterface.html

7. http://api.symfony.com/2.6/Symfony/Component/Validator/GroupSequenceProviderInterface.html#getGroupSequence()

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 145

http://sensiolabs.com

Listing 13-20

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

// ...

/**
* @Assert\GroupSequenceProvider
*/

class User implements GroupSequenceProviderInterface
{

// ...
}

Validating Values and Arrays
Sofar, you'veseenhow you canvalidateentireobjects.But sometimes,you just want to validateasimple
value- like to verify that a string is a valid emailaddress.This is actuallypretty easyto do. From insidea
controller, it looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// ...
use Symfony\Component\Validator\Constraints as Assert ;

// ...
public function addEmailAction($email)
{

$emailConstraint = new Assert\Email ();
// all constraint "options" can be set this way
$emailConstraint ->message= 'Invalid email address' ;

// use the validator to validate the value
// If you're using the new 2.5 validation API (you probably are!)
$errorList = $this ->get('validator') ->validate (

$email,
$emailConstraint

);

// If you're using the old 2.4 validation API
/*
$errorList = $this->get('validator')->validateValue(

$email,
$emailConstraint

);
*/

if (0 === count($errorList)) {
// ... this IS a valid email address, do something

} else {
// this is *not* a valid email address
$errorMessage = $errorList [0] ->getMessage();

// ... do something with the error
}

// ...
}

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 146

http://sensiolabs.com

Bycallingvalidate on the validator, you canpassin a raw valueandthe constraintobject that you want
to validatethat valueagainst.A full list of the availableconstraints- aswell asthe full classnamefor each
constraint - is available in theconstraints referencesection.

The validate method returns a ConstraintViolationList 8 object, which acts just like an array of
errors.Eacherror in the collection is a ConstraintViolation 9 object,which holds the error messageon
its getMessagemethod.

Final Thoughts
The Symfony validator is a powerful tool that can be leveragedto guaranteethat the data of any
object is "valid". The power behind validation lies in "constraints",which are rules that you can apply
to properties or getter methods of your object. And while you'll most commonly use the validation
framework indirectly when using forms, remember that it can be used anywhere to validate any object.

Learn more from the Cookbook
¥ How to Create a custom Validation Constraint

8. http://api.symfony.com/2.6/Symfony/Component/Validator/ConstraintViolationList.html

9. http://api.symfony.com/2.6/Symfony/Component/Validator/ConstraintViolation.html

PDF brought to you by
generated on September 25, 2015

Chapter 13: Validation | 147

http://sensiolabs.com

Listing 14-1

Chapter 14

Forms

Dealing with HTML forms is one of the most common - and challenging- tasksfor a web developer.
Symfonyintegratesa Form componentthat makesdealingwith forms easy.In this chapter,you'll build
a complex form from the ground up, learningthe most important featuresof the form library along the
way.

The Symfony Form component is a standalonelibrary that can be used outside of Symfony
projects. For more information, see theForm component documentationon GitHub.

Creating a Simple Form
Supposeyou'rebuilding asimpletodo list applicationthat will needto display"tasks".Becauseyour users
will needto edit and createtasks,you'regoing to needto build a form. But beforeyou begin,first focus
on the genericTaskclass that represents and stores the data for a single task:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/AppBundle/Entity/Task.php
namespaceAppBundle\Entity ;

class Task
{

protected $task;
protected $dueDate;

public function getTask()
{

return $this ->task ;
}

public function setTask($task)
{

$this ->task = $task;
}

PDF brought to you by
generated on September 25, 2015

Chapter 14: Forms | 148

http://sensiolabs.com

Listing 14-2

18
19
20
21
22
23
24
25
26
27
28

public function getDueDate()
{

return $this ->dueDate;
}

public function setDueDate(\DateTime $dueDate = null)
{

$this ->dueDate = $dueDate;
}

}

This classis a "plain-old-PHP-object"because,so far, it hasnothing to do with Symfonyor any other
library. It's quite simply a normal PHPobject that directly solvesa problem insideyour application (i.e.
the needto representa task in your application). Of course,by the end of this chapter,you'll be ableto
submit data to aTaskinstance (via an HTML form), validate its data, and persist it to the database.

Building the Form

Now that you'vecreateda Task class,the next step is to createand render the actual HTML form. In
Symfony,this is doneby building a form objectand then renderingit in a template.For now, this canall
be done from inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// src/AppBundle/Controller/DefaultController.php
namespaceAppBundle\Controller ;

use AppBundle\Entity\Task ;
use Symfony\Bundle\FrameworkBundle\Controller\Controller ;
use Symfony\Component\HttpFoundation\Request;

class DefaultController extends Controller
{

public function newAction(Request $request)
{

// create a task and give it some dummy data for this example
$task = new Task();
$task->setTask('Write a blog post');
$task->setDueDate(new \DateTime('tomorrow'));

$form = $this ->createFormBuilder ($task)
->add('task' , 'text')
->add('dueDate' , 'date')
->add('save' , 'submit' , array ('label' => 'Create Task'))
->getForm();

return $this ->render('default/new.html.twig' , array (
'form' => $form->createView(),

));
}

}

This exampleshowsyou how to build your form directly in the controller. Later, in the "Creating
Form Classes" section, you'll learn how to build your form in a standaloneclass, which is
recommended as your form becomes reusable.

PDF brought to you by
generated on September 25, 2015

Chapter 14: Forms | 149

http://sensiolabs.com

	The Book Version: 2.6 generated on September 25, 2015
	

	Contents at a Glance
	Symfony and HTTP Fundamentals
	HTTP is Simple
	Step1: The Client Sends a Request
	Step 2: The Server Returns a Response
	Requests, Responses and Web Development

	Requests and Responses in PHP
	Requests and Responses in Symfony
	The Journey from the Request to the Response
	The Front Controller
	Stay Organized
	The Symfony Application Flow
	A Symfony Request in Action

	Symfony: Build your App, not your Tools
	Standalone Tools: The Symfony Components
	The Full Solution: The Symfony Framework

	Symfony versus Flat PHP
	A Simple Blog in Flat PHP
	Isolating the Presentation
	Isolating the Application (Domain) Logic
	Isolating the Layout

	Adding a Blog "show" Page
	A "Front Controller" to the Rescue
	Creating the Front Controller
	Add a Touch of Symfony
	The Sample Application in Symfony
	Where Symfony Delivers

	Better Templates
	Learn more from the Cookbook

	Installing and Configuring Symfony
	Installing the Symfony Installer
	Linux and Mac OS X Systems
	Windows Systems

	Creating the Symfony Application
	Basing your Project on a Specific Symfony Version

	Creating Symfony Applications without the Installer
	Installing Composer Globally
	Creating a Symfony Application with Composer

	Running the Symfony Application
	Checking Symfony Application Configuration and Setup
	Updating Symfony Applications
	Installing the Symfony Demo Application
	Installing a Symfony Distribution
	Using Source Control
	Checking out a versioned Symfony Application

	Beginning Development

	Create your First Page in Symfony
	Creating a Page: Route and Controller
	Creating a JSON Response

	Dynamic URL Patterns: /lucky/number/{count}
	Rendering a Template (with the Service Container)
	Using the templating Service
	Create the Template

	Exploring the Project
	Application Configuration
	What's Next?

	Controller
	Requests, Controller, Response Lifecycle
	A Simple Controller
	Mapping a URL to a Controller
	Route Parameters as Controller Arguments
	The Request as a Controller Argument

	The Base Controller Class
	Redirecting
	Rendering Templates
	Accessing other Services

	Managing Errors and 404 Pages
	Managing the Session
	Flash Messages

	The Response Object
	The Request Object
	Creating Static Pages
	Forwarding to Another Controller
	Validating a CSRF Token
	Final Thoughts
	Learn more from the Cookbook

	Routing
	Routing in Action
	Routing: Under the Hood
	Creating Routes
	Basic Route Configuration
	Routing with Placeholders
	Required and Optional Placeholders
	Adding Requirements
	Adding HTTP Method Requirements
	Adding a Host Requirement
	Completely Customized Route Matching with Conditions
	Advanced Routing Example
	Special Routing Parameters

	Controller Naming Pattern
	Route Parameters and Controller Arguments
	Including External Routing Resources
	Prefixing Imported Routes
	Adding a Host Requirement to Imported Routes

	Visualizing & Debugging Routes
	Generating URLs
	Generating URLs with Query Strings
	Generating URLs from a Template
	Generating Absolute URLs

	Summary
	Learn more from the Cookbook

	Creating and Using Templates
	Templates
	Twig Template Caching

	Template Inheritance and Layouts
	Template Naming and Locations
	Referencing Templates in a Bundle
	Template Suffix

	Tags and Helpers
	Including other Templates
	Embedding Controllers
	Asynchronous Content with hinclude.js
	Linking to Pages
	Linking to Assets

	Including Stylesheets and JavaScripts in Twig
	Global Template Variables
	Configuring and Using the templating Service
	Overriding Bundle Templates
	Overriding Core Templates

	Three-level Inheritance
	Output Escaping
	Output Escaping in Twig
	Output Escaping in PHP

	Debugging
	Syntax Checking
	Template Formats
	Final Thoughts
	Learn more from the Cookbook

	Configuring Symfony (and Environments)
	Default Configuration Dump
	Environments

	Environment Configuration

	The Bundle System
	Creating a Bundle
	Bundle Directory Structure

	Databases and Doctrine
	A Simple Example: A Product
	Configuring the Database
	Creating an Entity Class
	Add Mapping Information
	Generating Getters and Setters
	Creating the Database Tables/Schema
	Persisting Objects to the Database
	Fetching Objects from the Database
	Updating an Object
	Deleting an Object

	Querying for Objects
	Querying for Objects with DQL
	Querying for Objects Using Doctrine's Query Builder
	Custom Repository Classes

	Entity Relationships/Associations
	Relationship Mapping Metadata
	Saving Related Entities
	Fetching Related Objects
	Joining Related Records
	More Information on Associations

	Configuration
	Lifecycle Callbacks
	Doctrine Field Types Reference
	Summary
	Learn more

	Databases and Propel
	Testing
	The PHPUnit Testing Framework
	Unit Tests
	Functional Tests
	Your First Functional Test

	Working with the Test Client
	Browsing
	Accessing Internal Objects
	Accessing the Container
	Accessing the Profiler Data
	Redirecting

	The Crawler
	Traversing
	Extracting Information
	Links
	Forms

	Testing Configuration
	PHPUnit Configuration

	Learn more

	Validation
	The Basics of Validation
	Using the validator Service
	Validation and Forms

	Configuration
	Constraints
	Supported Constraints
	Basic Constraints
	String Constraints
	Number Constraints
	Comparison Constraints
	Date Constraints
	Collection Constraints
	File Constraints
	Financial and other Number Constraints
	Other Constraints
	Constraint Configuration

	Translation Constraint Messages
	Constraint Targets
	Properties
	Getters
	Classes

	Validation Groups
	Group Sequence
	Group Sequence Providers

	Validating Values and Arrays
	Final Thoughts
	Learn more from the Cookbook

	Forms
	Creating a Simple Form
	Building the Form
	Rendering the Form
	Handling Form Submissions
	Submitting Forms with Multiple Buttons

	Form Validation
	Validation Groups
	Disabling Validation
	Groups based on the Submitted Data
	Groups based on the Clicked Button

	Built-in Field Types
	Text Fields
	Choice Fields
	Date and Time Fields
	Other Fields
	Field Groups
	Hidden Fields
	Buttons
	Base Fields
	Field Type Options

	Field Type Guessing
	Field Type Options Guessing

	Rendering a Form in a Template
	Rendering each Field by Hand
	Twig Template Function Reference

	Changing the Action and Method of a Form
	Creating Form Classes
	Defining your Forms as Services

	Forms and Doctrine
	Embedded Forms
	Embedding a Single Object
	Embedding a Collection of Forms

	Form Theming
	Form Fragment Naming
	Template Fragment Inheritance
	Global Form Theming
	Twig
	PHP

	CSRF Protection
	Using a Form without a Class
	Adding Validation

	Final Thoughts
	Learn more from the Cookbook

	Security
	1) Initial security.yml Setup (Authentication)
	A) Configuring how your Users will Authenticate
	B) Configuring how Users are Loaded
	Loading Users from the Database

	C) Encoding the User's Password
	D) Configuration Done!

	2) Denying Access, Roles and other Authorization
	Roles
	Add Code to Deny Access
	Securing URL patterns (access_control)
	Securing Controllers and other Code
	Access Control in Templates
	Securing other Services

	Checking to see if a User is Logged In (IS_AUTHENTICATED_FULLY)
	Access Control Lists (ACLs): Securing individual Database Objects

	Retrieving the User Object
	Always Check if the User is Logged In
	Retrieving the User in a Template

	Logging Out
	Dynamically Encoding a Password
	Hierarchical Roles
	Stateless Authentication
	Checking for Known Security Vulnerabilities in Dependencies

	Final Words
	Learn More from the Cookbook

	HTTP Cache
	Caching on the Shoulders of Giants
	Caching with a Gateway Cache
	Types of Caches
	Symfony Reverse Proxy

	Introduction to HTTP Caching
	The Cache-Control Header
	Public vs Private Responses
	Safe Methods
	Caching Rules and Defaults

	HTTP Expiration, Validation and Invalidation
	Expiration
	Expiration with the Expires Header
	Expiration with the Cache-Control Header
	Validation
	Validation with the ETag Header
	Validation with the Last-Modified Header
	Optimizing your Code with Validation
	Varying the Response
	Expiration and Validation
	More Response Methods
	Cache Invalidation

	Using Edge Side Includes
	Using ESI in Symfony

	Summary
	Learn more from the Cookbook

	Translations
	Configuration
	Basic Translation
	The Translation Process

	Message Placeholders
	Pluralization
	Translations in Templates
	Twig Templates
	PHP Templates

	Translation Resource/File Names and Locations
	Fallback Translation Locales
	Handling the User's Locale
	The Locale and the URL
	Setting a Default Locale

	Translating Constraint Messages
	Translating Database Content
	Debugging Translations
	Summary

	Service Container
	What is a Service?
	What is a Service Container?
	Creating/Configuring Services in the Container
	Service Parameters
	Array Parameters

	Importing other Container Configuration Resources
	Importing Configuration with imports
	Importing Configuration via Container Extensions

	Referencing (Injecting) Services
	Using the Expression Language
	Optional Dependencies: Setter Injection
	Injecting the Request

	Making References optional
	Core Symfony and Third-Party Bundle Services
	Tags
	Debugging Services
	Learn more

	Performance
	Use a Byte Code Cache (e.g. APC)
	Further Optimizations

	Use Composer's Class Map Functionality
	Caching the Autoloader with APC
	Use Bootstrap Files
	Bootstrap Files and Byte Code Caches

