
The Components Book
Version: 4.0

generated on April 25, 2018

The Components Book (4.0)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license. For any reuse or distribution, you must make clear to
others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

How to Install and Use the Symfony Components..4
The Asset Component...6
The BrowserKit Component..12
The Cache Component ...17
Cache Invalidation ..21
Cache Items..23
Cache Pools and Supported Adapters ..26
APCu Cache Adapter ..30
Array Cache Adapter...32
Chain Cache Adapter ..33
Doctrine Cache Adapter..35
Filesystem Cache Adapter ...36
Memcached Cache Adapter...38
PDO & Doctrine DBAL Cache Adapter ...44
Php Array Cache Adapter ..45
Php Files Cache Adapter ...46
Proxy Cache Adapter ..48
Redis Cache Adapter...49
Adapters For Interoperability between PSR-6 and PSR-16 Cache ..52
The ClassLoader Component ..54
The Config Component ..55
Caching based on Resources..56
Defining and Processing Configuration Values ...58
Loading Resources ..71

PDF brought to you by

generated on April 25, 2018

Contents at a Glance | iii

http://sensiolabs.com

Listing 1-1

Chapter 1

How to Install and Use the Symfony
Components

If you're starting a new project (or already have a project) that will use one or more components, the
easiest way to integrate everything is with Composer1. Composer is smart enough to download the
component(s) that you need and take care of autoloading so that you can begin using the libraries
immediately.

This article will take you through using The Finder Component, though this applies to using any
component.

Using the Finder Component
1. If you're creating a new project, create a new empty directory for it.

2. Open a terminal and use Composer to grab the library.

1 $ composer require symfony/finder

The name symfony/finder is written at the top of the documentation for whatever component you
want.

Install composer2 if you don't have it already present on your system. Depending on how you install,
you may end up with a composer.phar file in your directory. In that case, no worries! Just run
php composer.phar require symfony/finder.

3. Write your code!

Once Composer has downloaded the component(s), all you need to do is include the vendor/
autoload.php file that was generated by Composer. This file takes care of autoloading all of the
libraries so that you can use them immediately:

1. https://getcomposer.org

2. https://getcomposer.org/download/

PDF brought to you by

generated on April 25, 2018

Chapter 1: How to Install and Use the Symfony Components | 4

http://sensiolabs.com

Listing 1-2 1
2
3
4
5
6
7
8
9
10
11
12

// File example: src/script.php

// update this to the path to the "vendor/"
// directory, relative to this file
require_once __DIR__.'/../vendor/autoload.php';

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->in('../data/');

// ...

Now what?
Now that the component is installed and autoloaded, read the specific component's documentation to
find out more about how to use it.

And have fun!

PDF brought to you by

generated on April 25, 2018

Chapter 1: How to Install and Use the Symfony Components | 5

http://sensiolabs.com

Listing 2-1

Listing 2-2

Chapter 2

The Asset Component

The Asset component manages URL generation and versioning of web assets such as CSS
stylesheets, JavaScript files and image files.

In the past, it was common for web applications to hardcode URLs of web assets. For example:

1
2
3
4
5

<link rel="stylesheet" type="text/css" href="/css/main.css">

<!-- ... -->

This practice is no longer recommended unless the web application is extremely simple. Hardcoding
URLs can be a disadvantage because:

• Templates get verbose: you have to write the full path for each asset. When using the Asset
component, you can group assets in packages to avoid repeating the common part of their path;

• Versioning is difficult: it has to be custom managed for each application. Adding a version (e.g.
main.css?v=5) to the asset URLs is essential for some applications because it allows you to control how
the assets are cached. The Asset component allows you to define different versioning strategies for
each package;

• Moving assets location is cumbersome and error-prone: it requires you to carefully update the
URLs of all assets included in all templates. The Asset component allows to move assets effortlessly
just by changing the base path value associated with the package of assets;

• It's nearly impossible to use multiple CDNs: this technique requires you to change the URL of
the asset randomly for each request. The Asset component provides out-of-the-box support for any
number of multiple CDNs, both regular (http://) and secure (https://).

Installation

1 $ composer require symfony/asset

PDF brought to you by

generated on April 25, 2018

Chapter 2: The Asset Component | 6

http://sensiolabs.com

Listing 2-3

Listing 2-4

Alternatively, you can clone the https://github.com/symfony/asset repository.

If you install this component outside of a Symfony application, you must require the vendor/
autoload.php file in your code to enable the class autoloading mechanism provided by Composer.
Read this article for more details.

Usage

Asset Packages

The Asset component manages assets through packages. A package groups all the assets which share
the same properties: versioning strategy, base path, CDN hosts, etc. In the following basic example, a
package is created to manage assets without any versioning:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Asset\Package;
use Symfony\Component\Asset\VersionStrategy\EmptyVersionStrategy;

$package = new Package(new EmptyVersionStrategy());

// Absolute path
echo $package->getUrl('/image.png');
// result: /image.png

// Relative path
echo $package->getUrl('image.png');
// result: image.png

Packages implement PackageInterface1, which defines the following two methods:
getVersion()getVersion()2

Returns the asset version for an asset.

getUrl()getUrl()3

Returns an absolute or root-relative public path.

With a package, you can:
1. version the assets;
2. set a common base path (e.g. /css) for the assets;
3. configure a CDN for the assets

Versioned Assets

One of the main features of the Asset component is the ability to manage the versioning of the
application's assets. Asset versions are commonly used to control how these assets are cached.

Instead of relying on a simple version mechanism, the Asset component allows you to define advanced
versioning strategies via PHP classes. The two built-in strategies are the EmptyVersionStrategy4,
which doesn't add any version to the asset and StaticVersionStrategy5, which allows you to set
the version with a format string.

In this example, the StaticVersionStrategy is used to append the v1 suffix to any asset path:

1. http://api.symfony.com/4.0/Symfony/Component/Asset/PackageInterface.html
2. http://api.symfony.com/4.0/Symfony/Component/Asset/PackageInterface.html#method_getVersionhttp://api.symfony.com/4.0/Symfony/Component/Asset/PackageInterface.html#method_getVersion
3. http://api.symfony.com/4.0/Symfony/Component/Asset/PackageInterface.html#method_getUrlhttp://api.symfony.com/4.0/Symfony/Component/Asset/PackageInterface.html#method_getUrl

4. http://api.symfony.com/4.0/Symfony/Component/Asset/VersionStrategy/EmptyVersionStrategy.html

5. http://api.symfony.com/4.0/Symfony/Component/Asset/VersionStrategy/StaticVersionStrategy.html

PDF brought to you by

generated on April 25, 2018

Chapter 2: The Asset Component | 7

https://github.com/symfony/asset
http://sensiolabs.com

Listing 2-5

Listing 2-6

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Asset\Package;
use Symfony\Component\Asset\VersionStrategy\StaticVersionStrategy;

$package = new Package(new StaticVersionStrategy('v1'));

// Absolute path
echo $package->getUrl('/image.png');
// result: /image.png?v1

// Relative path
echo $package->getUrl('image.png');
// result: image.png?v1

In case you want to modify the version format, pass a sprintf-compatible format string as the second
argument of the StaticVersionStrategy constructor:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// puts the 'version' word before the version value
$package = new Package(new StaticVersionStrategy('v1', '%s?version=%s'));

echo $package->getUrl('/image.png');
// result: /image.png?version=v1

// puts the asset version before its path
$package = new Package(new StaticVersionStrategy('v1', '%2$s/%1$s'));

echo $package->getUrl('/image.png');
// result: /v1/image.png

echo $package->getUrl('image.png');
// result: v1/image.png

Custom Version Strategies

Use the VersionStrategyInterface6 to define your own versioning strategy. For example, your
application may need to append the current date to all its web assets in order to bust the cache every day:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

use Symfony\Component\Asset\VersionStrategy\VersionStrategyInterface;

class DateVersionStrategy implements VersionStrategyInterface
{

private $version;

public function __construct()
{

$this->version = date('Ymd');
}

public function getVersion($path)
{

return $this->version;
}

public function applyVersion($path)
{

return sprintf('%s?v=%s', $path, $this->getVersion($path));
}

}

Grouped Assets

Often, many assets live under a common path (e.g. /static/images). If that's your case, replace the
default Package7 class with PathPackage8 to avoid repeating that path over and over again:

6. http://api.symfony.com/4.0/Symfony/Component/Asset/VersionStrategy/VersionStrategyInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 2: The Asset Component | 8

http://sensiolabs.com

Listing 2-7

Listing 2-8

Listing 2-9

Listing 2-10

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Asset\PathPackage;
// ...

$pathPackage = new PathPackage('/static/images', new StaticVersionStrategy('v1'));

echo $pathPackage->getUrl('logo.png');
// result: /static/images/logo.png?v1

// Base path is ignored when using absolute paths
echo $package->getUrl('/logo.png');
// result: /logo.png?v1

Request Context Aware Assets

If you are also using the HttpFoundation component in your project (for instance, in a Symfony
application), the PathPackage class can take into account the context of the current request:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\Asset\PathPackage;
use Symfony\Component\Asset\Context\RequestStackContext;
// ...

$pathPackage = new PathPackage(
'/static/images',
new StaticVersionStrategy('v1'),
new RequestStackContext($requestStack)

);

echo $pathPackage->getUrl('logo.png');
// result: /somewhere/static/images/logo.png?v1

// Both "base path" and "base url" are ignored when using absolute path for asset
echo $package->getUrl('/logo.png');
// result: /logo.png?v1

Now that the request context is set, the PathPackage will prepend the current request base URL.
So, for example, if your entire site is hosted under the /somewhere directory of your web server
root directory and the configured base path is /static/images, all paths will be prefixed with
/somewhere/static/images.

Absolute Assets and CDNs

Applications that host their assets on different domains and CDNs (Content Delivery Networks) should
use the UrlPackage9 class to generate absolute URLs for their assets:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Asset\UrlPackage;
// ...

$urlPackage = new UrlPackage(
'http://static.example.com/images/',
new StaticVersionStrategy('v1')

);

echo $urlPackage->getUrl('/logo.png');
// result: http://static.example.com/images/logo.png?v1

You can also pass a schema-agnostic URL:

7. http://api.symfony.com/4.0/Symfony/Component/Asset/Package.html

8. http://api.symfony.com/4.0/Symfony/Component/Asset/PathPackage.html

9. http://api.symfony.com/4.0/Symfony/Component/Asset/UrlPackage.html

PDF brought to you by

generated on April 25, 2018

Chapter 2: The Asset Component | 9

/var/www/symfony.com/bin/../var/docs/build/symfony/4.0/components/http_foundation.html
/var/www/symfony.com/bin/../var/docs/build/symfony/4.0/components/http_foundation.html
http://sensiolabs.com

Listing 2-11

Listing 2-12

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Asset\UrlPackage;
// ...

$urlPackage = new UrlPackage(
'//static.example.com/images/',
new StaticVersionStrategy('v1')

);

echo $urlPackage->getUrl('/logo.png');
// result: //static.example.com/images/logo.png?v1

This is useful because assets will automatically be requested via HTTPS if a visitor is viewing your site in
https. Just make sure that your CDN host supports https.

In case you serve assets from more than one domain to improve application performance, pass an array
of URLs as the first argument to the UrlPackage constructor:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Asset\UrlPackage;
// ...

$urls = array(
'//static1.example.com/images/',
'//static2.example.com/images/',

);
$urlPackage = new UrlPackage($urls, new StaticVersionStrategy('v1'));

echo $urlPackage->getUrl('/logo.png');
// result: http://static1.example.com/images/logo.png?v1
echo $urlPackage->getUrl('/icon.png');
// result: http://static2.example.com/images/icon.png?v1

For each asset, one of the URLs will be randomly used. But, the selection is deterministic, meaning that
each asset will be always served by the same domain. This behavior simplifies the management of HTTP
cache.

Request Context Aware Assets

Similarly to application-relative assets, absolute assets can also take into account the context of the
current request. In this case, only the request scheme is considered, in order to select the appropriate base
URL (HTTPs or protocol-relative URLs for HTTPs requests, any base URL for HTTP requests):

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Asset\UrlPackage;
use Symfony\Component\Asset\Context\RequestStackContext;
// ...

$urlPackage = new UrlPackage(
array('http://example.com/', 'https://example.com/'),
new StaticVersionStrategy('v1'),
new RequestStackContext($requestStack)

);

echo $urlPackage->getUrl('/logo.png');
// assuming the RequestStackContext says that we are on a secure host
// result: https://example.com/logo.png?v1

Named Packages

Applications that manage lots of different assets may need to group them in packages with the same
versioning strategy and base path. The Asset component includes a Packages10 class to simplify
management of several packages.

10. http://api.symfony.com/4.0/Symfony/Component/Asset/Packages.html

PDF brought to you by

generated on April 25, 2018

Chapter 2: The Asset Component | 10

http://sensiolabs.com

Listing 2-13

Listing 2-14

In the following example, all packages use the same versioning strategy, but they all have different base
paths:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\Asset\Package;
use Symfony\Component\Asset\PathPackage;
use Symfony\Component\Asset\UrlPackage;
use Symfony\Component\Asset\Packages;
// ...

$versionStrategy = new StaticVersionStrategy('v1');

$defaultPackage = new Package($versionStrategy);

$namedPackages = array(
'img' => new UrlPackage('http://img.example.com/', $versionStrategy),
'doc' => new PathPackage('/somewhere/deep/for/documents', $versionStrategy),

);

$packages = new Packages($defaultPackage, $namedPackages)

The Packages class allows to define a default package, which will be applied to assets that don't define
the name of package to use. In addition, this application defines a package named img to serve images
from an external domain and a doc package to avoid repeating long paths when linking to a document
inside a template:

1
2
3
4
5
6
7
8

echo $packages->getUrl('/main.css');
// result: /main.css?v1

echo $packages->getUrl('/logo.png', 'img');
// result: http://img.example.com/logo.png?v1

echo $packages->getUrl('resume.pdf', 'doc');
// result: /somewhere/deep/for/documents/resume.pdf?v1

Learn more

PDF brought to you by

generated on April 25, 2018

Chapter 2: The Asset Component | 11

http://sensiolabs.com

Listing 3-1

Chapter 3

The BrowserKit Component

The BrowserKit component simulates the behavior of a web browser, allowing you to make requests,
click on links and submit forms programmatically.

The BrowserKit component can only make internal requests to your application. If you need to make
requests to external sites and applications, consider using Goutte1, a simple web scraper based on
Symfony Components.

Installation

1 $ composer require symfony/browser-kit

Alternatively, you can clone the https://github.com/symfony/browser-kit repository.

If you install this component outside of a Symfony application, you must require the vendor/
autoload.php file in your code to enable the class autoloading mechanism provided by Composer.
Read this article for more details.

Basic Usage

Creating a Client

The component only provides an abstract client and does not provide any backend ready to use for the
HTTP layer.

1. https://github.com/FriendsOfPHP/Goutte

PDF brought to you by

generated on April 25, 2018

Chapter 3: The BrowserKit Component | 12

https://github.com/symfony/browser-kit
http://sensiolabs.com

Listing 3-2

Listing 3-3

Listing 3-4

To create your own client, you must extend the abstract Client class and implement the
doRequest()2 method. This method accepts a request and should return a response:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

namespace Acme;

use Symfony\Component\BrowserKit\Client as BaseClient;
use Symfony\Component\BrowserKit\Response;

class Client extends BaseClient
{

protected function doRequest($request)
{

// ... convert request into a response

return new Response($content, $status, $headers);
}

}

For a simple implementation of a browser based on the HTTP layer, have a look at Goutte3. For
an implementation based on HttpKernelInterface, have a look at the Client4 provided by the
HttpKernel component.

Making Requests

Use the request()5 method to make HTTP requests. The first two arguments are the HTTP method
and the requested URL:

use Acme\Client;

$client = new Client();
$crawler = $client->request('GET', '/');

The value returned by the request() method is an instance of the Crawler6 class, provided by the
DomCrawler component, which allows accessing and traversing HTML elements programmatically.

Clicking Links

The Crawler object is capable of simulating link clicks. First, pass the text content of the link to the
selectLink() method, which returns a Link object. Then, pass this object to the click() method,
which performs the needed HTTP GET request to simulate the link click:

1
2
3
4
5
6

use Acme\Client;

$client = new Client();
$crawler = $client->request('GET', '/product/123');
$link = $crawler->selectLink('Go elsewhere...')->link();
$client->click($link);

Submitting Forms

The Crawler object is also capable of selecting forms. First, select any of the form's buttons with the
selectButton() method. Then, use the form() method to select the form which the button belongs
to.

2. http://api.symfony.com/4.0/Symfony/Component/BrowserKit/Client.html#method_doRequest

3. https://github.com/FriendsOfPHP/Goutte

4. http://api.symfony.com/4.0/Symfony/Component/HttpKernel/Client.html

5. http://api.symfony.com/4.0/Symfony/Component/BrowserKit/Client.html#method_request

6. http://api.symfony.com/4.0/Symfony/Component/DomCrawler/Crawler.html

PDF brought to you by

generated on April 25, 2018

Chapter 3: The BrowserKit Component | 13

/var/www/symfony.com/bin/../var/docs/build/symfony/4.0/components/http_kernel.html
/var/www/symfony.com/bin/../var/docs/build/symfony/4.0/components/http_kernel.html
http://sensiolabs.com

Listing 3-5

Listing 3-6

Listing 3-7

After selecting the form, fill in its data and send it using the submit() method (which makes the needed
HTTP POST request to submit the form contents):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Acme\Client;

// make a real request to an external site
$client = new Client();
$crawler = $client->request('GET', 'https://github.com/login');

// select the form and fill in some values
$form = $crawler->selectButton('Log in')->form();
$form['login'] = 'symfonyfan';
$form['password'] = 'anypass';

// To upload a file, the value should be the absolute file path
$form['file'] = __FILE__;

// submit that form
$crawler = $client->submit($form);

Cookies

Retrieving Cookies

The Client implementation exposes cookies (if any) through a CookieJar7, which allows you to store
and retrieve any cookie while making requests with the client:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

use Acme\Client;

// Make a request
$client = new Client();
$crawler = $client->request('GET', '/');

// Get the cookie Jar
$cookieJar = $client->getCookieJar();

// Get a cookie by name
$cookie = $cookieJar->get('name_of_the_cookie');

// Get cookie data
$name = $cookie->getName();
$value = $cookie->getValue();
$rawValue = $cookie->getRawValue();
$isSecure = $cookie->isSecure();
$isHttpOnly = $cookie->isHttpOnly();
$isExpired = $cookie->isExpired();
$expires = $cookie->getExpiresTime();
$path = $cookie->getPath();
$domain = $cookie->getDomain();
$sameSite = $cookie->getSameSite();

These methods only return cookies that have not expired.

Looping Through Cookies

7. http://api.symfony.com/4.0/Symfony/Component/BrowserKit/CookieJar.html

PDF brought to you by

generated on April 25, 2018

Chapter 3: The BrowserKit Component | 14

http://sensiolabs.com

Listing 3-8

Listing 3-9

Listing 3-10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

use Acme\Client;

// Make a request
$client = new Client();
$crawler = $client->request('GET', '/');

// Get the cookie Jar
$cookieJar = $client->getCookieJar();

// Get array with all cookies
$cookies = $cookieJar->all();
foreach ($cookies as $cookie) {

// ...
}

// Get all values
$values = $cookieJar->allValues('http://symfony.com');
foreach ($values as $value) {

// ...
}

// Get all raw values
$rawValues = $cookieJar->allRawValues('http://symfony.com');
foreach ($rawValues as $rawValue) {

// ...
}

Setting Cookies

You can also create cookies and add them to a cookie jar that can be injected into the client constructor:

1
2
3
4
5
6
7
8
9
10

use Acme\Client;

// create cookies and add to cookie jar
$cookie = new Cookie('flavor', 'chocolate', strtotime('+1 day'));
$cookieJar = new CookieJar();
$cookieJar->set($cookie);

// create a client and set the cookies
$client = new Client(array(), null, $cookieJar);
// ...

History
The client stores all your requests allowing you to go back and forward in your history:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Acme\Client;

$client = new Client();
$client->request('GET', '/');

// select and click on a link
$link = $crawler->selectLink('Documentation')->link();
$client->click($link);

// go back to home page
$crawler = $client->back();

// go forward to documentation page
$crawler = $client->forward();

You can delete the client's history with the restart() method. This will also delete all the cookies:

PDF brought to you by

generated on April 25, 2018

Chapter 3: The BrowserKit Component | 15

http://sensiolabs.com

1
2
3
4
5
6
7

use Acme\Client;

$client = new Client();
$client->request('GET', '/');

// reset the client (history and cookies are cleared too)
$client->restart();

Learn more
• Testing
• The CssSelector Component
• The DomCrawler Component

PDF brought to you by

generated on April 25, 2018

Chapter 3: The BrowserKit Component | 16

http://sensiolabs.com

Listing 4-1

Chapter 4

The Cache Component

The Cache component provides an extended PSR-61 implementation as well as a PSR-162 "Simple
Cache" implementation for adding cache to your applications. It is designed to have a low overhead
and it ships with ready to use adapters for the most common caching backends.

Installation

1 $ composer require symfony/cache

Alternatively, you can clone the https://github.com/symfony/cache repository.

If you install this component outside of a Symfony application, you must require the vendor/
autoload.php file in your code to enable the class autoloading mechanism provided by Composer.
Read this article for more details.

Cache (PSR-6) Versus Simple Cache (PSR-16)
This component includes two different approaches to caching:
PSR-6 Caching:

A fully-featured cache system, which includes cache "pools", more advanced cache "items", and
cache tagging for invalidation.

PSR-16 Simple Caching:
A simple way to store, fetch and remove items from a cache.

Both methods support the same cache adapters and will give you very similar performance.

1. http://www.php-fig.org/psr/psr-6/

2. http://www.php-fig.org/psr/psr-16/

PDF brought to you by

generated on April 25, 2018

Chapter 4: The Cache Component | 17

https://github.com/symfony/cache
http://sensiolabs.com

Listing 4-2

Listing 4-3

Listing 4-4

The component also contains adapters to convert between PSR-6 and PSR-16 caches. See Adapters
For Interoperability between PSR-6 and PSR-16 Cache.

Simple Caching (PSR-16)

This part of the component is an implementation of PSR-163, which means that its basic API is the same
as defined in the standard. First, create a cache object from one of the built-in cache classes. For example,
to create a filesystem-based cache, instantiate FilesystemCache4:

use Symfony\Component\Cache\Simple\FilesystemCache;

$cache = new FilesystemCache();

Now you can create, retrieve, update and delete items using this object:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// save a new item in the cache
$cache->set('stats.products_count', 4711);

// or set it with a custom ttl
// $cache->set('stats.products_count', 4711, 3600);

// retrieve the cache item
if (!$cache->has('stats.products_count')) {

// ... item does not exists in the cache
}

// retrieve the value stored by the item
$productsCount = $cache->get('stats.products_count');

// or specify a default value, if the key doesn't exist
// $productsCount = $cache->get('stats.products_count', 100);

// remove the cache key
$cache->delete('stats.products_count');

// clear *all* cache keys
$cache->clear();

You can also work with multiple items at once:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$cache->setMultiple(array(
'stats.products_count' => 4711,
'stats.users_count' => 1356,

));

$stats = $cache->getMultiple(array(
'stats.products_count',
'stats.users_count',

));

$cache->deleteMultiple(array(
'stats.products_count',
'stats.users_count',

));

Available Simple Cache (PSR-16) Classes

The following cache adapters are available:

3. http://www.php-fig.org/psr/psr-16/

4. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/FilesystemCache.html

PDF brought to you by

generated on April 25, 2018

Chapter 4: The Cache Component | 18

http://sensiolabs.com

Listing 4-5

To find out more about each of these classes, you can read the PSR-6 Cache Pool page. These
"Simple" (PSR-16) cache classes aren't identical to the PSR-6 Adapters on that page, but each share
constructor arguments and use-cases.

• ApcuCache5

• ArrayCache6

• ChainCache7

• DoctrineCache8

• FilesystemCache9

• MemcachedCache10

• NullCache11

• PdoCache12

• PhpArrayCache13

• PhpFilesCache14

• RedisCache15

• TraceableCache16

More Advanced Caching (PSR-6)
To use the more-advanced, PSR-6 Caching abilities, you'll need to learn its key concepts:
Item

A single unit of information stored as a key/value pair, where the key is the unique identifier of the
information and the value is its contents;

Pool
A logical repository of cache items. All cache operations (saving items, looking for items, etc.) are
performed through the pool. Applications can define as many pools as needed.

Adapter
It implements the actual caching mechanism to store the information in the filesystem, in a
database, etc. The component provides several ready to use adapters for common caching backends
(Redis, APCu, Doctrine, PDO, etc.)

Basic Usage (PSR-6)

This part of the component is an implementation of PSR-617, which means that its basic API is the same
as defined in the standard. Before starting to cache information, create the cache pool using any of the
built-in adapters. For example, to create a filesystem-based cache, instantiate FilesystemAdapter18:

use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new FilesystemAdapter();

5. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/ApcuCache.html
6. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/ArrayCache.html
7. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/ChainCache.html
8. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/DoctrineCache.html
9. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/FilesystemCache.html
10. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/MemcachedCache.html
11. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/NullCache.html
12. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/PdoCache.html
13. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/PhpArrayCache.html
14. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/PhpFilesCache.html
15. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/RedisCache.html
16. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/TraceableCache.html

17. http://www.php-fig.org/psr/psr-6/

18. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/FilesystemAdapter.html

PDF brought to you by

generated on April 25, 2018

Chapter 4: The Cache Component | 19

http://sensiolabs.com

Listing 4-6

Now you can create, retrieve, update and delete items using this cache pool:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// create a new item by trying to get it from the cache
$productsCount = $cache->getItem('stats.products_count');

// assign a value to the item and save it
$productsCount->set(4711);
$cache->save($productsCount);

// retrieve the cache item
$productsCount = $cache->getItem('stats.products_count');
if (!$productsCount->isHit()) {

// ... item does not exists in the cache
}
// retrieve the value stored by the item
$total = $productsCount->get();

// remove the cache item
$cache->deleteItem('stats.products_count');

For a list of all of the supported adapters, see Cache Pools and Supported Adapters.

Advanced Usage (PSR-6)
• Cache Invalidation
• Cache Items
• Cache Pools and Supported Adapters
• Adapters For Interoperability between PSR-6 and PSR-16 Cache

PDF brought to you by

generated on April 25, 2018

Chapter 4: The Cache Component | 20

http://sensiolabs.com

Listing 5-1

Listing 5-2

Chapter 5

Cache Invalidation

Cache invalidation is the process of removing all cached items related to a change in the state of your
model. The most basic kind of invalidation is direct items deletion. But when the state of a primary
resource has spread across several cached items, keeping them in sync can be difficult.

The Symfony Cache component provides two mechanisms to help solving this problem:

• Tags based invalidation for managing data dependencies;
• Expiration based invalidation for time related dependencies.

Using Cache Tags
To benefit from tags based invalidation, you need to attach the proper tags to each cached item. Each tag
is a plain string identifier that you can use at any time to trigger the removal of all items associated with
this tag.

To attach tags to cached items, you need to use the tag()1 method that is implemented by cache items,
as returned by cache adapters:

1
2
3
4
5
6

$item = $cache->getItem('cache_key');
// ...
// add one or more tags
$item->tag('tag_1');
$item->tag(array('tag_2', 'tag_3'));
$cache->save($item);

If $cache implements TagAwareAdapterInterface2, you can invalidate the cached items by calling
invalidateTags()3:

1
2
3

// invalidate all items related to `tag_1` or `tag_3`
$cache->invalidateTags(array('tag_1', 'tag_3'));

1. http://api.symfony.com/4.0/Symfony/Component/Cache/CacheItem.html#method_tag

2. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapterInterface.html

3. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapterInterface.html#method_invalidateTags

PDF brought to you by

generated on April 25, 2018

Chapter 5: Cache Invalidation | 21

http://sensiolabs.com

Listing 5-3

4
5

// if you know the cache key, you can also delete the item directly
$cache->deleteItem('cache_key');

Using tags invalidation is very useful when tracking cache keys becomes difficult.

Tag Aware Adapters

To store tags, you need to wrap a cache adapter with the TagAwareAdapter4 class or implement
TagAwareAdapterInterface5 and its only invalidateTags()6 method.

The TagAwareAdapter7 class implements instantaneous invalidation (time complexity is O(N) where
N is the number of invalidated tags). It needs one or two cache adapters: the first required one is used to
store cached items; the second optional one is used to store tags and their invalidation version number
(conceptually similar to their latest invalidation date). When only one adapter is used, items and tags
are all stored in the same place. By using two adapters, you can e.g. store some big cached items on the
filesystem or in the database and keep tags in a Redis database to sync all your fronts and have very fast
invalidation checks:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Cache\Adapter\TagAwareAdapter;
use Symfony\Component\Cache\Adapter\FilesystemAdapter;
use Symfony\Component\Cache\Adapter\RedisAdapter;

$cache = new TagAwareAdapter(
// Adapter for cached items
new FilesystemAdapter(),
// Adapter for tags
new RedisAdapter('redis://localhost')

);

Since Symfony 3.4, TagAwareAdapter8 implements PruneableInterface9, enabling manual
pruning of expired cache entries by calling its prune()10 method (assuming the wrapped adapter
itself implements PruneableInterface11).

Using Cache Expiration
If your data is valid only for a limited period of time, you can specify their lifetime or their expiration date
with the PSR-6 interface, as explained in the Cache Items article.

4. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapter.html

5. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapterInterface.html

6. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapterInterface.html#method_invalidateTags

7. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapter.html

8. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapter.html

9. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

10. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/TagAwareAdapter.html#method_prune

11. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 5: Cache Invalidation | 22

http://sensiolabs.com

Listing 6-1

Listing 6-2

Chapter 6

Cache Items

Cache items are the information units stored in the cache as a key/value pair. In the Cache component
they are represented by the CacheItem1 class.

Cache Item Keys and Values
The key of a cache item is a plain string which acts as its identifier, so it must be unique for each cache
pool. You can freely choose the keys, but they should only contain letters (A-Z, a-z), numbers (0-9) and
the _ and . symbols. Other common symbols (such as {, }, (,), /, \ and @) are reserved by the PSR-6
standard for future uses.

The value of a cache item can be any data represented by a type which is serializable by PHP, such as
basic types (string, integer, float, boolean, null), arrays and objects.

Creating Cache Items

Cache items are created with the getItem($key) method of the cache pool. The argument is the key
of the item:

// $cache pool object was created before
$productsCount = $cache->getItem('stats.products_count');

Then, use the set()2 method to set the data stored in the cache item:

1
2
3
4
5
6
7
8

// storing a simple integer
$productsCount->set(4711);
$cache->save($productsCount);

// storing an array
$productsCount->set(array(

'category1' => 4711,
'category2' => 2387,

1. http://api.symfony.com/4.0/Symfony/Component/Cache/CacheItem.html

2. http://api.symfony.com/4.0/Psr/Cache/CacheItemInterface.html#method_set

PDF brought to you by

generated on April 25, 2018

Chapter 6: Cache Items | 23

http://sensiolabs.com

Listing 6-3

Listing 6-4

Listing 6-5

Listing 6-6

9
10

));
$cache->save($productsCount);

The key and the value of any given cache item can be obtained with the corresponding getter methods:

$cacheItem = $cache->getItem('exchange_rate');
// ...
$key = $cacheItem->getKey();
$value = $cacheItem->get();

Cache Item Expiration

By default cache items are stored permanently. In practice, this "permanent storage" can vary greatly
depending on the type of cache being used, as explained in the Cache Pools and Supported Adapters
article.

However, in some applications it's common to use cache items with a shorter lifespan. Consider for
example an application which caches the latest news just for one minute. In those cases, use the
expiresAfter() method to set the number of seconds to cache the item:

1
2
3
4
5

$latestNews = $cache->getItem('latest_news');
$latestNews->expiresAfter(60); // 60 seconds = 1 minute

// this method also accepts \DateInterval instances
$latestNews->expiresAfter(DateInterval::createFromDateString('1 hour'));

Cache items define another related method called expiresAt() to set the exact date and time when the
item will expire:

$mostPopularNews = $cache->getItem('popular_news');
$mostPopularNews->expiresAt(new \DateTime('tomorrow'));

Cache Item Hits and Misses
Using a cache mechanism is important to improve the application performance, but it should not be
required to make the application work. In fact, the PSR-6 standard states that caching errors should not
result in application failures.

In practice this means that the getItem() method always returns an object which implements the
Psr\Cache\CacheItemInterface interface, even when the cache item doesn't exist. Therefore, you
don't have to deal with null return values and you can safely store in the cache values such as false
and null.

In order to decide if the returned object is correct or not, caches use the concept of hits and misses:

• Cache Hits occur when the requested item is found in the cache, its value is not corrupted or invalid
and it hasn't expired;

• Cache Misses are the opposite of hits, so they occur when the item is not found in the cache, its
value is corrupted or invalid for any reason or the item has expired.

Cache item objects define a boolean isHit() method which returns true for cache hits:

1
2
3
4
5
6
7

$latestNews = $cache->getItem('latest_news');

if (!$latestNews->isHit()) {
// do some heavy computation
$news = ...;
$cache->save($latestNews->set($news));

} else {

PDF brought to you by

generated on April 25, 2018

Chapter 6: Cache Items | 24

http://sensiolabs.com

8
9

$news = $latestNews->get();
}

PDF brought to you by

generated on April 25, 2018

Chapter 6: Cache Items | 25

http://sensiolabs.com

Listing 7-1

Chapter 7

Cache Pools and Supported Adapters

Cache Pools are the logical repositories of cache items. They perform all the common operations on
items, such as saving them or looking for them. Cache pools are independent from the actual cache
implementation. Therefore, applications can keep using the same cache pool even if the underlying cache
mechanism changes from a file system based cache to a Redis or database based cache.

Creating Cache Pools
Cache Pools are created through the cache adapters, which are classes that implement
AdapterInterface1. This component provides several adapters ready to use in your applications.

• APCu Cache Adapter
• Array Cache Adapter
• Chain Cache Adapter
• Doctrine Cache Adapter
• Filesystem Cache Adapter
• Memcached Cache Adapter
• PDO & Doctrine DBAL Cache Adapter
• Php Array Cache Adapter
• Php Files Cache Adapter
• Proxy Cache Adapter
• Redis Cache Adapter

Looking for Cache Items
Cache Pools define three methods to look for cache items. The most common method is
getItem($key), which returns the cache item identified by the given key:

use Symfony\Component\Cache\Adapter\FilesystemAdapter;

1. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/AdapterInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 7: Cache Pools and Supported Adapters | 26

http://sensiolabs.com

Listing 7-2

Listing 7-3

Listing 7-4

Listing 7-5

$cache = new FilesystemAdapter('app.cache');
$latestNews = $cache->getItem('latest_news');

If no item is defined for the given key, the method doesn't return a null value but an empty object which
implements the CacheItem2 class.

If you need to fetch several cache items simultaneously, use instead the getItems(array($key1,
$key2, ...)) method:

// ...
$stocks = $cache->getItems(array('AAPL', 'FB', 'GOOGL', 'MSFT'));

Again, if any of the keys doesn't represent a valid cache item, you won't get a null value but an empty
CacheItem object.

The last method related to fetching cache items is hasItem($key), which returns true if there is a
cache item identified by the given key:

// ...
$hasBadges = $cache->hasItem('user_'.$userId.'_badges');

Saving Cache Items

The most common method to save cache items is save()3, which stores the item in the cache
immediately (it returns true if the item was saved or false if some error occurred):

// ...
$userFriends = $cache->getItem('user_'.$userId.'_friends');
$userFriends->set($user->getFriends());
$isSaved = $cache->save($userFriends);

Sometimes you may prefer to not save the objects immediately in order to increase the application
performance. In those cases, use the saveDeferred()4 method to mark cache items as "ready to be
persisted" and then call to commit()5 method when you are ready to persist them all:

1
2
3
4
5
6
7
8

// ...
$isQueued = $cache->saveDeferred($userFriends);
// ...
$isQueued = $cache->saveDeferred($userPreferences);
// ...
$isQueued = $cache->saveDeferred($userRecentProducts);
// ...
$isSaved = $cache->commit();

The saveDeferred() method returns true when the cache item has been successfully added to the
"persist queue" and false otherwise. The commit() method returns true when all the pending items
are successfully saved or false otherwise.

2. http://api.symfony.com/4.0/Symfony/Component/Cache/CacheItem.html

3. http://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html#method_save

4. http://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html#method_saveDeferred

5. http://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html#method_commit

PDF brought to you by

generated on April 25, 2018

Chapter 7: Cache Pools and Supported Adapters | 27

http://sensiolabs.com

Listing 7-6

Listing 7-7

Listing 7-8

Listing 7-9

Listing 7-10

Removing Cache Items
Cache Pools include methods to delete a cache item, some of them or all of them. The most common
is deleteItem()6, which deletes the cache item identified by the given key (it returns true when the
item is successfully deleted or doesn't exist and false otherwise):

// ...
$isDeleted = $cache->deleteItem('user_'.$userId);

Use the deleteItems()7 method to delete several cache items simultaneously (it returns true only if
all the items have been deleted, even when any or some of them don't exist):

// ...
$areDeleted = $cache->deleteItems(array('category1', 'category2'));

Finally, to remove all the cache items stored in the pool, use the clear()8 method (which returns true
when all items are successfully deleted):

// ...
$cacheIsEmpty = $cache->clear();

If the cache component is used inside a Symfony application, you can remove all items from the given
pool(s) using the following command (which resides within the framework bundle):

1
2
3
4
5
6
7

$ php bin/console cache:pool:clear <cache-pool-name>

clears the "cache.app" pool
$ php bin/console cache:pool:clear cache.app

clears the "cache.validation" and "cache.app" pool
$ php bin/console cache:pool:clear cache.validation cache.app

Pruning Cache Items
Some cache pools do not include an automated mechanism for pruning expired cache items. For
example, the FilesystemAdaper cache does not remove expired cache items until an item is explicitly
requested and determined to be expired, for example, via a call to getItem()9. Under certain workloads,
this can cause stale cache entries to persist well past their expiration, resulting in a sizable consumption
of wasted disk or memory space from excess, expired cache items.

This shortcomming has been solved through the introduction of PruneableInterface10, which
defines the abstract method prune()11. The ChainAdapter, FilesystemAdaper, PdoAdapter, and
PhpFilesAdapter all implement this new interface, allowing manual removal of stale cache items:

1
2
3
4
5

use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new FilesystemAdapter('app.cache');
// ... do some set and get operations
$cache->prune();

6. http://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html#method_deleteItem

7. http://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html#method_deleteItems

8. http://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html#method_clear

9. http://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html#method_getItem

10. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

11. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html#method_prune

PDF brought to you by

generated on April 25, 2018

Chapter 7: Cache Pools and Supported Adapters | 28

http://sensiolabs.com

Listing 7-11

Listing 7-12

The ChainAdapter implementation does not directly contain any pruning logic itself. Instead, when
calling the chain adapter's prune()12 method, the call is delegated to all its compatibe cache adapters
(and those that do not implement PruneableInterface are silently ignored):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

use Symfony\Component\Cache\Adapter\ApcuAdapter;
use Symfony\Component\Cache\Adapter\ChainAdapter;
use Symfony\Component\Cache\Adapter\FilesystemAdapter;
use Symfony\Component\Cache\Adapter\PdoAdapter;
use Symfony\Component\Cache\Adapter\PhpFilesAdapter;

$cache = new ChainAdapter(array(
new ApcuAdapter(), // does NOT implement PruneableInterface
new FilesystemAdapter(), // DOES implement PruneableInterface
new PdoAdapter(), // DOES implement PruneableInterface
new PhpFilesAdapter(), // DOES implement PruneableInterface
// ...

));

// prune will proxy the call to PdoAdapter, FilesystemAdapter and PhpFilesAdapter,
// while silently skipping ApcuAdapter
$cache->prune();

If the cache component is used inside a Symfony application, you can prune all items from all pools
using the following command (which resides within the framework bundle):

1 $ php bin/console cache:pool:prune

12. http://api.symfony.com/4.0/Symfony/Component/Cache/ChainAdapter.html#method_prune

PDF brought to you by

generated on April 25, 2018

Chapter 7: Cache Pools and Supported Adapters | 29

http://sensiolabs.com

Listing 8-1

Chapter 8

APCu Cache Adapter

This adapter is a high-performance, shared memory cache. It can significantly increase an application's
performance, as its cache contents are stored in shared memory, a component appreciably faster than
many others, such as the filesystem.

Requirement: The APCu extension1 must be installed and active to use this adapter.

The ApcuAdapter can optionally be provided a namespace, default cache lifetime, and cache items
version string as constructor arguments:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\Cache\Adapter\ApcuAdapter;

$cache = new ApcuAdapter(

// a string prefixed to the keys of the items stored in this cache
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until the APCu memory is cleared)
$defaultLifetime = 0,

// when set, all keys prefixed by $namespace can be invalidated by changing
// this $version string
$version = null

);

Use of this adapter is discouraged in write/delete heavy workloads, as these operations cause
memory fragmentation that results in significantly degraded performance.

1. https://pecl.php.net/package/APCu

PDF brought to you by

generated on April 25, 2018

Chapter 8: APCu Cache Adapter | 30

http://sensiolabs.com

This adapter's CRUD operations are specific to the PHP SAPI it is running under. This means cache
operations (such as additions, deletions, etc) using the CLI will not be available under the FPM or
CGI SAPIs.

PDF brought to you by

generated on April 25, 2018

Chapter 8: APCu Cache Adapter | 31

http://sensiolabs.com

Listing 9-1

Chapter 9

Array Cache Adapter

Generally, this adapter is useful for testing purposes, as its contents are stored in memory and not
persisted outside the running PHP process in any way. It can also be useful while warming up caches,
due to the getValues()1 method.

This adapter can be passed a default cache lifetime as its first parameter, and a boolean that toggles
serialization as its second parameter:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Cache\Adapter\ArrayAdapter;

$cache = new ArrayAdapter(

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until the current PHP process finishes)
$defaultLifetime = 0,

// if ``true``, the values saved in the cache are serialized before storing them
$storeSerialized = true

);

1. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/ArrayAdapter.html#method_getValues

PDF brought to you by

generated on April 25, 2018

Chapter 9: Array Cache Adapter | 32

http://sensiolabs.com

Listing 10-1

Listing 10-2

Chapter 10

Chain Cache Adapter

This adapter allows combining any number of the other available cache adapters. Cache items are fetched
from the first adapter containing them and cache items are saved to all the given adapters. This exposes
a simple and efficient method for creating a layered cache.

The ChainAdapter must be provided an array of adapters and optionally a maximum cache lifetime as its
constructor arguments:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Cache\Adapter\ApcuAdapter;

$cache = new ChainAdapter(array(

// The ordered list of adapters used to fetch cached items
array $adapters,

// The max lifetime of items propagated from lower adapters to upper ones
$maxLifetime = 0

));

When an item is not found in the first adapter but is found in the next ones, this adapter ensures that
the fetched item is saved to all the adapters where it was previously missing.

The following example shows how to create a chain adapter instance using the fastest and slowest storage
engines, ApcuAdapter1 and FilesystemAdapter2, respectfully:

1
2
3
4
5
6
7
8

use Symfony\Component\Cache\Adapter\ApcuAdapter;
use Symfony\Component\Cache\Adapter\ChainAdapter;
use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new ChainAdapter(array(
new ApcuAdapter(),
new FilesystemAdapter(),

));

1. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/ApcuAdapter.html

2. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/FilesystemAdapter.html

PDF brought to you by

generated on April 25, 2018

Chapter 10: Chain Cache Adapter | 33

http://sensiolabs.com

Listing 10-3

When calling this adapter's prune()3 method, the call is deligated to all its compatibe cache adapters.
It is safe to mix both adapters that do and do not implement PruneableInterface4, as incompatible
adapters are silently ignored:

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Cache\Adapter\ApcuAdapter;
use Symfony\Component\Cache\Adapter\ChainAdapter;
use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new ChainAdapter(array(
new ApcuAdapter(), // does NOT implement PruneableInterface
new FilesystemAdapter(), // DOES implement PruneableInterface

));

// prune will proxy the call to FilesystemAdapter while silently skipping ApcuAdapter
$cache->prune();

Since Symfony 3.4, this adapter implements PruneableInterface5, allowing for manual pruning
of expired cache entries by calling its prune() method.

3. http://api.symfony.com/4.0/Symfony/Component/Cache/ChainAdapter.html#method_prune

4. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

5. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 10: Chain Cache Adapter | 34

http://sensiolabs.com

Listing 11-1

Chapter 11

Doctrine Cache Adapter

This adapter wraps any class extending the Doctrine Cache1 abstract provider, allowing you to use these
providers in your application as if they were Symfony Cache adapters.

This adapter expects a \Doctrine\Common\Cache\CacheProvider instance as its first parameter,
and optionally a namespace and default cache lifetime as its second and third parameters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

use Doctrine\Common\Cache\CacheProvider;
use Doctrine\Common\Cache\SQLite3Cache;
use Symfony\Component\Cache\Adapter\DoctrineAdapter;

$provider = new SQLite3Cache(new \SQLite3(__DIR__.'/cache/data.sqlite'), 'youTableName');

$cache = new DoctrineAdapter(

// a cache provider instance
CacheProvider $provider,

// a string prefixed to the keys of the items stored in this cache
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until the database table is truncated or its rows are otherwise deleted)
$defaultLifetime = 0

);

1. https://github.com/doctrine/cache

PDF brought to you by

generated on April 25, 2018

Chapter 11: Doctrine Cache Adapter | 35

http://sensiolabs.com

Listing 12-1

Chapter 12

Filesystem Cache Adapter

This adapter offers improved application performance for those who cannot install tools like APCu or
Redis in their environment. It stores the cache item expiration and content as regular files in a collection
of directories on a locally mounted filesystem.

The performance of this adapter can be greatly increased by utilizing a temporary, in-memory
filesystem, such as tmpfs1 on Linux, or one of the many other RAM disk solutions2 available.

The FilesystemAdapter can optionally be provided a namespace, default cache lifetime, and cache root
path as constructor parameters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new FilesystemAdapter(

// a string used as the subdirectory of the root cache directory, where cache
// items will be stored
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until the files are deleted)
$defaultLifetime = 0,

// the main cache directory (the application needs read-write permissions on it)
// if none is specified, a directory is created inside the system temporary directory
$directory = null

);

The overhead of filesystem IO often makes this adapter one of the slower choices. If throughput
is paramount, the in-memory adapters (Apcu, Memcached, and Redis) or the database adapters
(Doctrine and PDO) are recommended.

1. https://wiki.archlinux.org/index.php/tmpfs

2. https://en.wikipedia.org/wiki/List_of_RAM_drive_software

PDF brought to you by

generated on April 25, 2018

Chapter 12: Filesystem Cache Adapter | 36

http://sensiolabs.com

Since Symfony 3.4, this adapter implements PruneableInterface3, enabling manual pruning of
expired cache items by calling its prune() method.

3. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 12: Filesystem Cache Adapter | 37

http://sensiolabs.com

Listing 13-1

Chapter 13

Memcached Cache Adapter

This adapter stores the values in-memory using one (or more) Memcached server1 instances. Unlike the
APCu adapter, and similarly to the Redis adapter, it is not limited to the current server's shared memory;
you can store contents independent of your PHP environment. The ability to utilize a cluster of servers to
provide redundancy and/or fail-over is also available.

Requirements: The Memcached PHP extension2 as well as a Memcached server3 must be installed,
active, and running to use this adapter. Version 2.2 or greater of the Memcached PHP extension4 is
required for this adapter.

This adapter expects a Memcached5 instance to be passed as the first parameter. A namespace and default
cache lifetime can optionally be passed as the second and third parameters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Symfony\Component\Cache\Adapter\MemcachedAdapter;

$cache = new MemcachedAdapter(
// the client object that sets options and adds the server instance(s)
\Memcached $client,

// a string prefixed to the keys of the items stored in this cache
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until MemcachedAdapter::clear() is invoked or the server(s) are restarted)
$defaultLifetime = 0

);

1. https://memcached.org/

2. http://php.net/manual/en/book.memcached.php

3. https://memcached.org/

4. http://php.net/manual/en/book.memcached.php

5. http://php.net/manual/en/class.memcached.php

PDF brought to you by

generated on April 25, 2018

Chapter 13: Memcached Cache Adapter | 38

http://sensiolabs.com

Listing 13-2

Listing 13-3

Listing 13-4

Configure the Connection

The createConnection()6 helper method allows creating and configuring a Memcached7 class
instance using a Data Source Name (DSN)8 or an array of DSNs:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

use Symfony\Component\Cache\Adapter\MemcachedAdapter;

// pass a single DSN string to register a single server with the client
$client = MemcachedAdapter::createConnection(

'memcached://localhost'
// the DSN can include config options (pass them as a query string):
// 'memcached://localhost:11222?retry_timeout=10'
// 'memcached://localhost:11222?socket_recv_size=1&socket_send_size=2'

);

// pass an array of DSN strings to register multiple servers with the client
$client = MemcachedAdapter::createConnection(array(

'memcached://10.0.0.100',
'memcached://10.0.0.101',
'memcached://10.0.0.102',
// etc...

));

The Data Source Name (DSN)9 for this adapter must use the following format:

1 memcached://[user:pass@][ip|host|socket[:port]][?weight=int]

The DSN must include a IP/host (and an optional port) or a socket path, an optional username and
password (for SASL authentication; it requires that the memcached extension was compiled with --
enable-memcached-sasl) and an optional weight (for prioritizing servers in a cluster; its value is an
integer between 0 and 100 which defaults to null; a higher value means more priority).

Below are common examples of valid DSNs showing a combination of available values:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

use Symfony\Component\Cache\Adapter\MemcachedAdapter;

$client = MemcachedAdapter::createConnection(array(
// hostname + port
'memcached://my.server.com:11211'

// hostname without port + SASL username and password
'memcached://rmf:abcdef@localhost'

// IP address instead of hostname + weight
'memcached://127.0.0.1?weight=50'

// socket instead of hostname/IP + SASL username and password
'memcached://janesmith:mypassword@/var/run/memcached.sock'

// socket instead of hostname/IP + weight
'memcached:///var/run/memcached.sock?weight=20'

));

6. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/MemcachedAdapter.html#method_createConnection

7. http://php.net/manual/en/class.memcached.php

8. https://en.wikipedia.org/wiki/Data_source_name

9. https://en.wikipedia.org/wiki/Data_source_name

PDF brought to you by

generated on April 25, 2018

Chapter 13: Memcached Cache Adapter | 39

http://sensiolabs.com

Listing 13-5

Configure the Options

The createConnection()10 helper method also accepts an array of options as its second argument.
The expected format is an associative array of key => value pairs representing option names and their
respective values:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Cache\Adapter\MemcachedAdapter;

$client = MemcachedAdapter::createConnection(
// a DSN string or an array of DSN strings
array(),

// associative array of configuration options
array(

'compression' => true,
'libketama_compatible' => true,
'serializer' => 'igbinary',

)
);

Available Options

auto_eject_hostsauto_eject_hosts (type: boolbool, default: falsefalse)
Enables or disables a constant, automatic, re-balancing of the cluster by auto-ejecting hosts that
have exceeded the configured server_failure_limit.

buffer_writesbuffer_writes (type: boolbool, default: falsefalse)
Enables or disables buffered input/output operations, causing storage commands to buffer instead
of being immediately sent to the remote server(s). Any action that retrieves data, quits the
connection, or closes down the connection will cause the buffer to be committed.

compressioncompression (type: boolbool, default: truetrue)
Enables or disables payload compression, where item values longer than 100 bytes are compressed
during storage and decompressed during retrieval.

compression_typecompression_type (type: stringstring)

Specifies the compression method used on value payloads. when the compression option is
enabled.

Valid option values include fastlz and zlib, with a default value that varies based on flags used
at compilation.

connect_timeoutconnect_timeout (type: intint, default: 10001000)

Specifies the timeout (in milliseconds) of socket connection operations when the no_block option
is enabled.

Valid option values include any positive integer.

distributiondistribution (type: stringstring, default: consistentconsistent)

Specifies the item key distribution method among the servers. Consistent hashing delivers better
distribution and allows servers to be added to the cluster with minimal cache losses.

Valid option values include modula, consistent, and virtual_bucket.

10. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/MemcachedAdapter.html#method_createConnection

PDF brought to you by

generated on April 25, 2018

Chapter 13: Memcached Cache Adapter | 40

http://sensiolabs.com

hashhash (type: stringstring, default: md5md5)

Specifies the hashing algorithm used for item keys. Each hash algorithm has its advantages and its
disadvantages. The default is suggested for compatibility with other clients.

Valid option values include default, md5, crc, fnv1_64, fnv1a_64, fnv1_32, fnv1a_32,
hsieh, and murmur.

libketama_compatiblelibketama_compatible (type: boolbool, default: truetrue)
Enables or disables "libketama" compatible behavior, enabling other libketama-based clients to
access the keys stored by client instance transparently (like Python and Ruby). Enabling this option
sets the hash option to md5 and the distribution option to consistent.

no_blockno_block (type: boolbool, default: truetrue)
Enables or disables asynchronous input and output operations. This is the fastest transport option
available for storage functions.

number_of_replicasnumber_of_replicas (type: intint, default: 00)

Specifies the number of replicas that should be stored for each item (on different servers). This
does not dedicate certain memcached servers to store the replicas in, but instead stores the replicas
together with all of the other objects (on the "n" next servers registered).

Valid option values include any positive integer.

prefix_keyprefix_key (type: stringstring, default: an empty string)

Specifies a "domain" (or "namespace") prepended to your keys. It cannot be longer than 128
characters and reduces the maximum key size.

Valid option values include any alphanumeric string.

poll_timeoutpoll_timeout (type: intint, default: 10001000)

Specifies the amount of time (in seconds) before timing out during a socket polling operation.

Valid option values include any positive integer.

randomize_replica_readrandomize_replica_read (type: boolbool, type: falsefalse)
Enables or disables randomization of the replica reads starting point. Normally the read is done
from primary server and in case of a miss the read is done from "primary+1", then "primary+2",
all the way to "n" replicas. This option sets the replica reads as randomized between all available
servers; it allows distributing read load to multiple servers with the expense of more write traffic.

recv_timeoutrecv_timeout (type: intint, default: 00)

Specifies the amount of time (in microseconds) before timing out during an outgoing socket (read)
operation. When the no_block option isn't enabled, this will allow you to still have timeouts on
the reading of data.

Valid option values include 0 or any positive integer.

retry_timeoutretry_timeout (type: intint, default: 00)

Specifies the amount of time (in seconds) before timing out and retrying a connection attempt.

Valid option values include any positive integer.

send_timeoutsend_timeout (type: intint, default: 00)

Specifies the amount of time (in microseconds) before timing out during an incoming socket (send)
operation. When the no_block option isn't enabled, this will allow you to still have timeouts on
the sending of data.

Valid option values include 0 or any positive integer.

PDF brought to you by

generated on April 25, 2018

Chapter 13: Memcached Cache Adapter | 41

http://sensiolabs.com

serializerserializer (type: stringstring, default: phpphp)

Specifies the serializer to use for serializing non-scalar values. The igbinary options requires the
igbinary PHP extension to be enabled, as well as the memcached extension to have been compiled
with support for it.

Valid option values include php and igbinary.

server_failure_limitserver_failure_limit (type: intint, default: 00)

Specifies the failure limit for server connection attempts before marking the server as "dead". The
server will remaining in the server pool unless auto_eject_hosts is enabled.

Valid option values include any positive integer.

socket_recv_sizesocket_recv_size (type: intint)

Specified the maximum buffer size (in bytes) in the context of incoming (receive) socket connection
data.

Valid option values include any positive integer, with a default value that varies by platform and
kernel configuration.

socket_send_sizesocket_send_size (type: intint)

Specified the maximum buffer size (in bytes) in the context of outgoing (send) socket connection
data.

Valid option values include any positive integer, with a default value that varies by platform and
kernel configuration.

tcp_keepalivetcp_keepalive (type: boolbool, default: falsefalse)
Enables or disables the "keep-alive11" Transmission Control Protocol (TCP)12 feature, which is a
feature that helps to determine whether the other end has stopped responding by sending probes to
the network peer after an idle period and closing or persisting the socket based on the response (or
lack thereof).

tcp_nodelaytcp_nodelay (type: boolbool, default: falsefalse)
Enables or disables the "no-delay13" (Nagle's algorithm) Transmission Control Protocol (TCP)14

algorithm, which is a mechanism intended to improve the efficiency of networks by reducing the
overhead of TCP headers by combining a number of small outgoing messages and sending them all
at once.

use_udpuse_udp (type: boolbool, default: falsefalse)

Enables or disabled the use of User Datagram Protocol (UDP)15 mode (instead of Transmission
Control Protocol (TCP)16 mode), where all operations are executed in a "fire-and-forget" manner;
no attempt to ensure the operation has been received or acted on will be made once the client has
executed it.

Not all library operations are tested in this mode. Mixed TCP and UDP servers are not allowed.

11. https://en.wikipedia.org/wiki/Keepalive

12. https://en.wikipedia.org/wiki/Transmission_Control_Protocol

13. https://en.wikipedia.org/wiki/TCP_NODELAY

14. https://en.wikipedia.org/wiki/Transmission_Control_Protocol

15. https://en.wikipedia.org/wiki/User_Datagram_Protocol

16. https://en.wikipedia.org/wiki/Transmission_Control_Protocol

PDF brought to you by

generated on April 25, 2018

Chapter 13: Memcached Cache Adapter | 42

http://sensiolabs.com

verify_keyverify_key (type: boolbool, default: falsefalse)
Enables or disables testing and verifying of all keys used to ensure they are valid and fit within the
design of the protocol being used.

Reference the Memcached17 extension's predefined constants18 documentation for additional
information about the available options.

17. http://php.net/manual/en/class.memcached.php

18. http://php.net/manual/en/memcached.constants.php

PDF brought to you by

generated on April 25, 2018

Chapter 13: Memcached Cache Adapter | 43

http://sensiolabs.com

Listing 14-1

Chapter 14

PDO & Doctrine DBAL Cache Adapter

This adapter stores the cache items in an SQL database. It requires a PDO1, Doctrine DBAL Connection2,
or Data Source Name (DSN)3 as its first parameter, and optionally a namespace, default cache lifetime,
and options array as its second, third, and forth parameters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

use Symfony\Component\Cache\Adapter\PdoAdapter;

$cache = new PdoAdapter(

// a PDO, a Doctrine DBAL connection or DSN for lazy connecting through PDO
$databaseConnectionOrDSN,

// the string prefixed to the keys of the items stored in this cache
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until the database table is truncated or its rows are otherwise deleted)
$defaultLifetime = 0,

// an array of options for configuring the database connection
$options = array()

);

When passed a Data Source Name (DSN)4 string (instead of a database connection class instance),
the connection will be lazy-loaded when needed.

Since Symfony 3.4, this adapter implements PruneableInterface5, allowing for manual pruning
of expired cache entries by calling its prune() method.

1. http://php.net/manual/en/class.pdo.php

2. https://github.com/doctrine/dbal/blob/master/lib/Doctrine/DBAL/Connection.php

3. https://en.wikipedia.org/wiki/Data_source_name

4. https://en.wikipedia.org/wiki/Data_source_name

5. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 14: PDO & Doctrine DBAL Cache Adapter | 44

http://sensiolabs.com

Listing 15-1

Chapter 15

Php Array Cache Adapter

This adapter is a highly performant way to cache static data (e.g. application configuration) that is
optimized and preloaded into OPcache memory storage:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

use Symfony\Component\Cache\Adapter\PhpArrayAdapter;
use Symfony\Component\Cache\Adapter\FilesystemAdapter;

// somehow, decide it's time to warm up the cache!
if ($needsWarmup) {

// some static values
$values = array(

'stats.products_count' => 4711,
'stats.users_count' => 1356,

);

$cache = new PhpArrayAdapter(
// single file where values are cached
__DIR__ . '/somefile.cache',
// a backup adapter, if you set values after warmup
new FilesystemAdapter()

);
$cache->warmUp($values);

}

// ... then, use the cache!
$cacheItem = $cache->getItem('stats.users_count');
echo $cacheItem->get();

This adapter requires PHP 7.x and should be used with the php.ini setting opcache.enable on.

PDF brought to you by

generated on April 25, 2018

Chapter 15: Php Array Cache Adapter | 45

http://sensiolabs.com

Listing 16-1

Listing 16-2

Chapter 16

Php Files Cache Adapter

Similarly to Filesystem Adapter, this cache implementation writes cache entries out to disk, but unlike
the Filesystem cache adapter, the PHP Files cache adapter writes and reads back these cache files as native
PHP code. For example, caching the value array('my', 'cached', 'array') will write out a
cache file similar to the following:

1
2
3
4
5
6
7
8
9
10
11
12
13

<?php return array(

// the cache item expiration
0 => 9223372036854775807,

// the cache item contents
1 => array (

0 => 'my',
1 => 'cached',
2 => 'array',

),

);

As cache items are included and parsed as native PHP code and due to the way OPcache1 handles file
includes, this adapter has the potential to be much faster than other filesystem-based caches.

The PhpFilesAdapter can optionally be provided a namespace, default cache lifetime, and cache directory
path as constructor arguments:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Cache\Adapter\PhpFilesAdapter;

$cache = new PhpFilesAdapter(

// a string used as the subdirectory of the root cache directory, where cache
// items will be stored
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.

1. http://php.net/manual/en/book.opcache.php

PDF brought to you by

generated on April 25, 2018

Chapter 16: Php Files Cache Adapter | 46

http://sensiolabs.com

11
12
13
14
15
16
17

// until the files are deleted)
$defaultLifetime = 0,

// the main cache directory (the application needs read-write permissions on it)
// if none is specified, a directory is created inside the system temporary directory
$directory = null

);

Since Symfony 3.4, this adapter implements PruneableInterface2, allowing for manual pruning
of expired cache entries by calling its prune() method.

2. http://api.symfony.com/4.0/Symfony/Component/Cache/PruneableInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 16: Php Files Cache Adapter | 47

http://sensiolabs.com

Listing 17-1

Chapter 17

Proxy Cache Adapter

This adapter wraps a PSR-61 compliant cache item pool interface2. It is used to integrate your application's
cache item pool implementation with the Symfony Cache Component by consuming any implementation
of Psr\Cache\CacheItemPoolInterface.

This adapter expects a Psr\Cache\CacheItemPoolInterface instance as its first parameter, and
optionally a namespace and default cache lifetime as its second and third parameters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

use Psr\Cache\CacheItemPoolInterface;
use Symfony\Component\Cache\Adapter\ProxyAdapter;

$psr6CachePool = \\ create your own cache pool instance that implements the PSR-6
\\ interface `CacheItemPoolInterface`

$cache = new ProxyAdapter(

// a cache pool instance
CacheItemPoolInterface $psr6CachePool,

// a string prefixed to the keys of the items stored in this cache
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until the cache is cleared)
$defaultLifetime = 0

);

1. http://www.php-fig.org/psr/psr-6/

2. http://www.php-fig.org/psr/psr-6/#cacheitempoolinterface

PDF brought to you by

generated on April 25, 2018

Chapter 17: Proxy Cache Adapter | 48

http://sensiolabs.com

Listing 18-1

Chapter 18

Redis Cache Adapter

This adapter stores the values in-memory using one (or more) Redis server1 instances. Unlike the APCu
adapter, and similarly to the Memcached adapter, it is not limited to the current server's shared memory;
you can store contents independent of your PHP environment. The ability to utilize a cluster of servers to
provide redundancy and/or fail-over is also available.

Requirements: At least one Redis server2 must be installed and running to use this adapter.
Additionally, this adapter requires a compatible extension or library that implements \Redis,
\RedisArray, RedisCluster, or \Predis.

This adapter expects a Redis3, RedisArray4, RedisCluster5, or Predis6 instance to be passed as the first
parameter. A namespace and default cache lifetime can optionally be passed as the second and third
parameters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Cache\Adapter\RedisAdapter;

$cache = new RedisAdapter(

// the object that stores a valid connection to your Redis system
\Redis $redisConnection,

// the string prefixed to the keys of the items stored in this cache
$namespace = '',

// the default lifetime (in seconds) for cache items that do not define their
// own lifetime, with a value 0 causing items to be stored indefinitely (i.e.
// until RedisAdapter::clear() is invoked or the server(s) are purged)
$defaultLifetime = 0

);

1. https://redis.io/

2. https://redis.io/

3. https://github.com/phpredis/phpredis

4. https://github.com/phpredis/phpredis/blob/master/arrays.markdown#readme

5. https://github.com/phpredis/phpredis/blob/master/cluster.markdown#readme

6. https://packagist.org/packages/predis/predis

PDF brought to you by

generated on April 25, 2018

Chapter 18: Redis Cache Adapter | 49

http://sensiolabs.com

Listing 18-2

Listing 18-3

Listing 18-4

Listing 18-5

Configure the Connection

The createConnection()7 helper method allows creating and configuring the Redis client class
instance using a Data Source Name (DSN)8:

1
2
3
4
5
6

use Symfony\Component\Cache\Adapter\RedisAdapter;

// pass a single DSN string to register a single server with the client
$client = RedisAdapter::createConnection(

'redis://localhost'
);

The DSN can specify either an IP/host (and an optional port) or a socket path, as well as a user and
password and a database index.

A Data Source Name (DSN)9 for this adapter must use the following format.

1 redis://[user:pass@][ip|host|socket[:port]][/db-index]

Below are common examples of valid DSNs showing a combination of available values:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Cache\Adapter\RedisAdapter;

// host "my.server.com" and port "6379"
RedisAdapter::createConnection('redis://my.server.com:6379');

// host "my.server.com" and port "6379" and database index "20"
RedisAdapter::createConnection('redis://my.server.com:6379/20');

// host "localhost" and SASL use "rmf" and pass "abcdef"
RedisAdapter::createConnection('redis://rmf:abcdef@localhost');

// socket "/var/run/redis.sock" and SASL user "user1" and pass "bad-pass"
RedisAdapter::createConnection('redis://user1:bad-pass@/var/run/redis.sock');

Configure the Options

The createConnection()10 helper method also accepts an array of options as its second argument.
The expected format is an associative array of key => value pairs representing option names and their
respective values:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Cache\Adapter\RedisAdapter;

$client = RedisAdapter::createConnection(

// provide a string dsn
'redis://localhost:6739',

// associative array of configuration options
array(

'persistent' => 0,
'persistent_id' => null,
'timeout' => 30,
'read_timeout' => 0,

7. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/RedisAdapter.html#method_createConnection

8. https://en.wikipedia.org/wiki/Data_source_name

9. https://en.wikipedia.org/wiki/Data_source_name

10. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/RedisAdapter.html#method_createConnection

PDF brought to you by

generated on April 25, 2018

Chapter 18: Redis Cache Adapter | 50

http://sensiolabs.com

14
15
16
17

'retry_interval' => 0,
)

);

Available Options

classclass (type: stringstring)
Specifies the connection library to return, either \Redis or \Predis\Client. If none is specified, it will
return \Redis if the redis extension is available, and \Predis\Client otherwise.

persistentpersistent (type: intint, default: 00)
Enables or disables use of persistent connections. A value of 0 disables persistent connections, and
a value of 1 enables them.

persistent_idpersistent_id (type: string|nullstring|null, default: nullnull)
Specifies the persistent id string to use for a persistent connection.

read_timeoutread_timeout (type: intint, default: 00)
Specifies the time (in seconds) used when performing read operations on the underlying network
resource before the operation times out.

retry_intervalretry_interval (type: intint, default: 00)
Specifies the delay (in milliseconds) between reconnection attempts in case the client loses
connection with the server.

timeouttimeout (type: intint, default: 3030)
Specifies the time (in seconds) used to connect to a Redis server before the connection attempt times
out.

When using the Predis11 library some additional Predis-specific options are available. Reference the
Predis Connection Parameters12 documentation for more information.

11. https://packagist.org/packages/predis/predis

12. https://github.com/nrk/predis/wiki/Connection-Parameters#list-of-connection-parameters

PDF brought to you by

generated on April 25, 2018

Chapter 18: Redis Cache Adapter | 51

http://sensiolabs.com

Listing 19-1

Listing 19-2

Chapter 19

Adapters For Interoperability between PSR-6
and PSR-16 Cache

Sometimes, you may have a Cache object that implements the PSR-16 standard, but need to pass it to
an object that expects a PSR-6 cache adapter. Or, you might have the opposite situation. The cache
component contains two classes for bidirectional interoperability between PSR-6 and PSR-16 caches.

Using a PSR-16 Cache Object as a PSR-6 Cache
Suppose you want to work with a class that requires a PSR-6 Cache pool object. For example:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Psr\Cache\CacheItemPoolInterface;

// just a made-up class for the example
class GitHubApiClient
{

// ...

// this requires a PSR-6 cache object
public function __construct(CacheItemPoolInterface $cachePool)
{

// ...
}

}

But, you already have a PSR-16 cache object, and you'd like to pass this to the class instead. No problem!
The Cache component provides the SimpleCacheAdapter1 class for exactly this use-case:

1
2
3
4
5
6
7

use Symfony\Component\Cache\Simple\FilesystemCache;
use Symfony\Component\Cache\Adapter\SimpleCacheAdapter;

// the PSR-16 cache object that you want to use
$psr16Cache = new FilesystemCache();

// a PSR-6 cache that uses your cache internally!

1. http://api.symfony.com/4.0/Symfony/Component/Cache/Adapter/SimpleCacheAdapter.html

PDF brought to you by

generated on April 25, 2018

Chapter 19: Adapters For Interoperability between PSR-6 and PSR-16 Cache | 52

http://sensiolabs.com

Listing 19-3

Listing 19-4

8
9
10
11

$psr6Cache = new SimpleCacheAdapter($psr16Cache);

// now use this wherever you want
$githubApiClient = new GitHubApiClient($psr6Cache);

Using a PSR-6 Cache Object as a PSR-16 Cache
Suppose you want to work with a class that requires a PSR-16 Cache object. For example:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Psr\SimpleCache\CacheInterface;

// just a made-up class for the example
class GitHubApiClient
{

// ...

// this requires a PSR-16 cache object
public function __construct(CacheInterface $cache)
{

// ...
}

}

But, you already have a PSR-6 cache pool object, and you'd like to pass this to the class instead. No
problem! The Cache component provides the Psr6Cache2 class for exactly this use-case:

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Cache\Adapter\FilesystemAdapter;
use Symfony\Component\Cache\Simple\Psr6Cache;

// the PSR-6 cache object that you want to use
$psr6Cache = new FilesystemAdapter();

// a PSR-16 cache that uses your cache internally!
$psr16Cache = new Psr6Cache($psr6Cache);

// now use this wherever you want
$githubApiClient = new GitHubApiClient($psr16Cache);

2. http://api.symfony.com/4.0/Symfony/Component/Cache/Simple/Psr6Cache.html

PDF brought to you by

generated on April 25, 2018

Chapter 19: Adapters For Interoperability between PSR-6 and PSR-16 Cache | 53

http://sensiolabs.com

Chapter 20

The ClassLoader Component

The ClassLoader component was removed in Symfony 4.0. As an alternative, use any of the class
loading optimizations1 provided by Composer.

1. https://getcomposer.org/doc/articles/autoloader-optimization.md

PDF brought to you by

generated on April 25, 2018

Chapter 20: The ClassLoader Component | 54

http://sensiolabs.com

Listing 21-1

Chapter 21

The Config Component

The Config component provides several classes to help you find, load, combine, autofill and validate
configuration values of any kind, whatever their source may be (YAML, XML, INI files, or for
instance a database).

Installation

1 $ composer require symfony/config

Alternatively, you can clone the https://github.com/symfony/config repository.

If you install this component outside of a Symfony application, you must require the vendor/
autoload.php file in your code to enable the class autoloading mechanism provided by Composer.
Read this article for more details.

Learn More
• Caching based on Resources
• Defining and Processing Configuration Values
• Loading Resources
• How to Create Friendly Configuration for a Bundle
• How to Load Service Configuration inside a Bundle
• How to Simplify Configuration of Multiple Bundles

PDF brought to you by

generated on April 25, 2018

Chapter 21: The Config Component | 55

https://github.com/symfony/config
http://sensiolabs.com

Listing 22-1

Chapter 22

Caching based on Resources

When all configuration resources are loaded, you may want to process the configuration values and
combine them all in one file. This file acts like a cache. Its contents don’t have to be regenerated every
time the application runs – only when the configuration resources are modified.

For example, the Symfony Routing component allows you to load all routes, and then dump a URL
matcher or a URL generator based on these routes. In this case, when one of the resources is modified
(and you are working in a development environment), the generated file should be invalidated and
regenerated. This can be accomplished by making use of the ConfigCache1 class.

The example below shows you how to collect resources, then generate some code based on the resources
that were loaded and write this code to the cache. The cache also receives the collection of resources that
were used for generating the code. By looking at the "last modified" timestamp of these resources, the
cache can tell if it is still fresh or that its contents should be regenerated:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

use Symfony\Component\Config\ConfigCache;
use Symfony\Component\Config\Resource\FileResource;

$cachePath = __DIR__.'/cache/appUserMatcher.php';

// the second argument indicates whether or not you want to use debug mode
$userMatcherCache = new ConfigCache($cachePath, true);

if (!$userMatcherCache->isFresh()) {
// fill this with an array of 'users.yaml' file paths
$yamlUserFiles = ...;

$resources = array();

foreach ($yamlUserFiles as $yamlUserFile) {
// see the article "Loading resources" to
// know where $delegatingLoader comes from
$delegatingLoader->load($yamlUserFile);
$resources[] = new FileResource($yamlUserFile);

}

// the code for the UserMatcher is generated elsewhere
$code = ...;

$userMatcherCache->write($code, $resources);

1. http://api.symfony.com/4.0/Symfony/Component/Config/ConfigCache.html

PDF brought to you by

generated on April 25, 2018

Chapter 22: Caching based on Resources | 56

http://sensiolabs.com

26
27
28
29

}

// you may want to require the cached code:
require $cachePath;

In debug mode, a .meta file will be created in the same directory as the cache file itself. This .meta file
contains the serialized resources, whose timestamps are used to determine if the cache is still fresh. When
not in debug mode, the cache is considered to be "fresh" as soon as it exists, and therefore no .meta file
will be generated.

PDF brought to you by

generated on April 25, 2018

Chapter 22: Caching based on Resources | 57

http://sensiolabs.com

Listing 23-1

Chapter 23

Defining and Processing Configuration Values

Validating Configuration Values
After loading configuration values from all kinds of resources, the values and their structure can be
validated using the "Definition" part of the Config Component. Configuration values are usually
expected to show some kind of hierarchy. Also, values should be of a certain type, be restricted in number
or be one of a given set of values. For example, the following configuration (in YAML) shows a clear
hierarchy and some validation rules that should be applied to it (like: "the value for auto_connect
must be a boolean value"):

1
2
3
4
5
6
7
8
9
10
11
12
13
14

auto_connect: true
default_connection: mysql
connections:

mysql:
host: localhost
driver: mysql
username: user
password: pass

sqlite:
host: localhost
driver: sqlite
memory: true
username: user
password: pass

When loading multiple configuration files, it should be possible to merge and overwrite some values.
Other values should not be merged and stay as they are when first encountered. Also, some keys are only
available when another key has a specific value (in the sample configuration above: the memory key only
makes sense when the driver is sqlite).

Defining a Hierarchy of Configuration Values Using the TreeBuilder

All the rules concerning configuration values can be defined using the TreeBuilder1.

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 58

http://sensiolabs.com

Listing 23-2

Listing 23-3

A TreeBuilder2 instance should be returned from a custom Configuration class which implements
the ConfigurationInterface3:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

namespace Acme\DatabaseConfiguration;

use Symfony\Component\Config\Definition\ConfigurationInterface;
use Symfony\Component\Config\Definition\Builder\TreeBuilder;

class DatabaseConfiguration implements ConfigurationInterface
{

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('database');

// ... add node definitions to the root of the tree

return $treeBuilder;
}

}

Adding Node Definitions to the Tree

Variable Nodes

A tree contains node definitions which can be laid out in a semantic way. This means, using indentation
and the fluent notation, it is possible to reflect the real structure of the configuration values:

1
2
3
4
5
6
7
8
9
10

$rootNode
->children()

->booleanNode('auto_connect')
->defaultTrue()

->end()
->scalarNode('default_connection')

->defaultValue('default')
->end()

->end()
;

The root node itself is an array node, and has children, like the boolean node auto_connect and the
scalar node default_connection. In general: after defining a node, a call to end() takes you one
step up in the hierarchy.

Node Type

It is possible to validate the type of a provided value by using the appropriate node definition. Node types
are available for:

• scalar (generic type that includes booleans, strings, integers, floats and null)
• boolean
• integer
• float
• enum (similar to scalar, but it only allows a finite set of values)
• array
• variable (no validation)

1. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

2. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

3. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/ConfigurationInterface.html

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 59

http://sensiolabs.com

Listing 23-4

Listing 23-5

Listing 23-6

Listing 23-7

and are created with node($name, $type) or their associated shortcut xxxxNode($name) method.

Numeric Node Constraints

Numeric nodes (float and integer) provide two extra constraints - min()4 and max()5 - allowing to
validate the value:

1
2
3
4
5
6
7
8
9
10
11
12
13

$rootNode
->children()

->integerNode('positive_value')
->min(0)

->end()
->floatNode('big_value')

->max(5E45)
->end()
->integerNode('value_inside_a_range')

->min(-50)->max(50)
->end()

->end()
;

Enum Nodes

Enum nodes provide a constraint to match the given input against a set of values:

1
2
3
4
5
6
7

$rootNode
->children()

->enumNode('delivery')
->values(array('standard', 'expedited', 'priority'))

->end()
->end()

;

This will restrict the delivery options to be either standard, expedited or priority.

Array Nodes

It is possible to add a deeper level to the hierarchy, by adding an array node. The array node itself, may
have a pre-defined set of variable nodes:

1
2
3
4
5
6
7
8
9
10
11
12

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')->end()
->scalarNode('host')->end()
->scalarNode('username')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
;

Or you may define a prototype for each node inside an array node:

1
2
3
4

$rootNode
->children()

->arrayNode('connections')
->arrayPrototype()

4. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/IntegerNodeDefinition.html#method_min

5. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/IntegerNodeDefinition.html#method_max

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 60

http://sensiolabs.com

Listing 23-8

Listing 23-9

Listing 23-10

5
6
7
8
9
10
11
12
13
14

->children()
->scalarNode('driver')->end()
->scalarNode('host')->end()
->scalarNode('username')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
->end()

;

A prototype can be used to add a definition which may be repeated many times inside the current node.
According to the prototype definition in the example above, it is possible to have multiple connection
arrays (containing a driver, host, etc.).

Sometimes, to improve the user experience of your application or bundle, you may allow to use a simple
string or numeric value where an array value is required. Use the castToArray() helper to turn those
variables into arrays:

->arrayNode('hosts')
->beforeNormalization()->castToArray()->end()
// ...

->end()

Array Node Options

Before defining the children of an array node, you can provide options like:
useAttributeAsKey()useAttributeAsKey()

Provide the name of a child node, whose value should be used as the key in the resulting array. This
method also defines the way config array keys are treated, as explained in the following example.

requiresAtLeastOneElement()requiresAtLeastOneElement()

There should be at least one element in the array (works only when isRequired() is also called).

addDefaultsIfNotSet()addDefaultsIfNotSet()

If any child nodes have default values, use them if explicit values haven't been provided.

normalizeKeys(false)normalizeKeys(false)

If called (with false), keys with dashes are not normalized to underscores. It is recommended to
use this with prototype nodes where the user will define a key-value map, to avoid an unnecessary
transformation.

ignoreExtraKeys()ignoreExtraKeys()

Allows extra config keys to be specified under an array without throwing an exception.

A basic prototyped array configuration can be defined as follows:

1
2
3
4
5
6
7
8

$node
->fixXmlConfig('driver')
->children()

->arrayNode('drivers')
->scalarPrototype()->end()

->end()
->end()

;

When using the following YAML configuration:

1 drivers: ['mysql', 'sqlite']

Or the following XML configuration:

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 61

http://sensiolabs.com

Listing 23-11

Listing 23-12

Listing 23-13

Listing 23-14

Listing 23-15

Listing 23-16

Listing 23-17

1
2

<driver>mysql</driver>
<driver>sqlite</driver>

The processed configuration is:

Array(
[0] => 'mysql'
[1] => 'sqlite'

)

A more complex example would be to define a prototyped array with children:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$node
->fixXmlConfig('connection')
->children()

->arrayNode('connections')
->arrayPrototype()

->children()
->scalarNode('table')->end()
->scalarNode('user')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
->end()

;

When using the following YAML configuration:

1
2
3

connections:
- { table: symfony, user: root, password: ~ }
- { table: foo, user: root, password: pa$$ }

Or the following XML configuration:

1
2

<connection table="symfony" user="root" password="null" />
<connection table="foo" user="root" password="pa$$" />

The processed configuration is:

1
2
3
4
5
6
7
8
9
10
11
12

Array(
[0] => Array(

[table] => 'symfony'
[user] => 'root'
[password] => null

)
[1] => Array(

[table] => 'foo'
[user] => 'root'
[password] => 'pa$$'

)
)

The previous output matches the expected result. However, given the configuration tree, when using the
following YAML configuration:

1
2
3
4
5
6
7
8
9

connections:
sf_connection:

table: symfony
user: root
password: ~

default:
table: foo
user: root
password: pa$$

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 62

http://sensiolabs.com

Listing 23-18

Listing 23-19

Listing 23-20

The output configuration will be exactly the same as before. In other words, the sf_connection and
default configuration keys are lost. The reason is that the Symfony Config component treats arrays as
lists by default.

As of writing this, there is an inconsistency: if only one file provides the configuration in question,
the keys (i.e. sf_connection and default) are not lost. But if more than one file provides the
configuration, the keys are lost as described above.

In order to maintain the array keys use the useAttributeAsKey() method:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

$node
->fixXmlConfig('connection')
->children()

->arrayNode('connections')
->useAttributeAsKey('name')
->arrayPrototype()

->children()
->scalarNode('table')->end()
->scalarNode('user')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
->end()

;

The argument of this method (name in the example above) defines the name of the attribute added to
each XML node to differentiate them. Now you can use the same YAML configuration shown before or
the following XML configuration:

1
2
3
4

<connection name="sf_connection"
table="symfony" user="root" password="null" />

<connection name="default"
table="foo" user="root" password="pa$$" />

In both cases, the processed configuration maintains the sf_connection and default keys:

1
2
3
4
5
6
7
8
9
10
11
12

Array(
[sf_connection] => Array(

[table] => 'symfony'
[user] => 'root'
[password] => null

)
[default] => Array(

[table] => 'foo'
[user] => 'root'
[password] => 'pa$$'

)
)

Default and Required Values
For all node types, it is possible to define default values and replacement values in case a node has a
certain value:
defaultValue()defaultValue()

Set a default value

isRequired()isRequired()

Must be defined (but may be empty)

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 63

http://sensiolabs.com

Listing 23-21

Listing 23-22

cannotBeEmpty()cannotBeEmpty()

May not contain an empty value

default*()default*()

(null, true, false), shortcut for defaultValue()

treat*Like()treat*Like()

(null, true, false), provide a replacement value in case the value is *.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->cannotBeEmpty()

->end()
->scalarNode('host')

->defaultValue('localhost')
->end()
->scalarNode('username')->end()
->scalarNode('password')->end()
->booleanNode('memory')

->defaultFalse()
->end()

->end()
->end()
->arrayNode('settings')

->addDefaultsIfNotSet()
->children()

->scalarNode('name')
->isRequired()
->cannotBeEmpty()
->defaultValue('value')

->end()
->end()

->end()
->end()

;

Deprecating the Option

You can deprecate options using the setDeprecated()6 method:

1
2
3
4
5
6
7
8
9
10
11
12

$rootNode
->children()

->integerNode('old_option')
// this outputs the following generic deprecation message:
// The child node "old_option" at path "..." is deprecated.
->setDeprecated()

// you can also pass a custom deprecation message (%node% and %path% placeholders are available):
->setDeprecated('The "%node%" option is deprecated. Use "new_config_option" instead.')

->end()
->end()

;

If you use the Web Debug Toolbar, these deprecation notices are shown when the configuration is
rebuilt.

6. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/NodeDefinition.html#method_setDeprecated

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 64

http://sensiolabs.com

Listing 23-23

Listing 23-24

Listing 23-25

Listing 23-26

Documenting the Option

All options can be documented using the info()7 method:

1
2
3
4
5
6
7
8

$rootNode
->children()

->integerNode('entries_per_page')
->info('This value is only used for the search results page.')
->defaultValue(25)

->end()
->end()

;

The info will be printed as a comment when dumping the configuration tree with the config:dump-
reference command.

In YAML you may have:

1
2

This value is only used for the search results page.
entries_per_page: 25

and in XML:

1
2

<!-- entries-per-page: This value is only used for the search results page. -->
<config entries-per-page="25" />

Optional Sections
If you have entire sections which are optional and can be enabled/disabled, you can take advantage of
the shortcut canBeEnabled()8 and canBeDisabled()9 methods:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$arrayNode
->canBeEnabled()

;

// is equivalent to

$arrayNode
->treatFalseLike(array('enabled' => false))
->treatTrueLike(array('enabled' => true))
->treatNullLike(array('enabled' => true))
->children()

->booleanNode('enabled')
->defaultFalse()

;

The canBeDisabled() method looks about the same except that the section would be enabled by
default.

Merging Options
Extra options concerning the merge process may be provided. For arrays:

7. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/NodeDefinition.html#method_info

8. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#method_canBeEnabled

9. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#method_canBeDisabled

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 65

http://sensiolabs.com

Listing 23-27

performNoDeepMerging()performNoDeepMerging()

When the value is also defined in a second configuration array, don't try to merge an array, but
overwrite it entirely

For all nodes:
cannotBeOverwritten()cannotBeOverwritten()

don't let other configuration arrays overwrite an existing value for this node

Appending Sections
If you have a complex configuration to validate then the tree can grow to be large and you may want to
split it up into sections. You can do this by making a section a separate node and then appending it into
the main tree with append():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('database');

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->cannotBeEmpty()

->end()
->scalarNode('host')

->defaultValue('localhost')
->end()
->scalarNode('username')->end()
->scalarNode('password')->end()
->booleanNode('memory')

->defaultFalse()
->end()

->end()
->append($this->addParametersNode())

->end()
->end()

;

return $treeBuilder;
}

public function addParametersNode()
{

$treeBuilder = new TreeBuilder();
$node = $treeBuilder->root('parameters');

$node
->isRequired()
->requiresAtLeastOneElement()
->useAttributeAsKey('name')
->arrayPrototype()

->children()
->scalarNode('value')->isRequired()->end()

->end()
->end()

;

return $node;
}

This is also useful to help you avoid repeating yourself if you have sections of the config that are repeated
in different places.

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 66

http://sensiolabs.com

Listing 23-28

Listing 23-29

Listing 23-30

Listing 23-31

Listing 23-32

The example results in the following:

1
2
3
4
5
6
7
8
9
10
11
12

database:
connection:

driver: ~ # Required
host: localhost
username: ~
password: ~
memory: false
parameters: # Required

Prototype
name:

value: ~ # Required

Normalization
When the config files are processed they are first normalized, then merged and finally the tree is used
to validate the resulting array. The normalization process is used to remove some of the differences that
result from different configuration formats, mainly the differences between YAML and XML.

The separator used in keys is typically _ in YAML and - in XML. For example, auto_connect in YAML
and auto-connect in XML. The normalization would make both of these auto_connect.

The target key will not be altered if it's mixed like foo-bar_moo or if it already exists.

Another difference between YAML and XML is in the way arrays of values may be represented. In YAML
you may have:

1
2

twig:
extensions: ['twig.extension.foo', 'twig.extension.bar']

and in XML:

1
2
3
4

<twig:config>
<twig:extension>twig.extension.foo</twig:extension>
<twig:extension>twig.extension.bar</twig:extension>

</twig:config>

This difference can be removed in normalization by pluralizing the key used in XML. You can specify
that you want a key to be pluralized in this way with fixXmlConfig():

1
2
3
4
5
6
7
8

$rootNode
->fixXmlConfig('extension')
->children()

->arrayNode('extensions')
->scalarPrototype()->end()

->end()
->end()

;

If it is an irregular pluralization you can specify the plural to use as a second argument:

1
2
3
4
5

$rootNode
->fixXmlConfig('child', 'children')
->children()

->arrayNode('children')
// ...

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 67

http://sensiolabs.com

Listing 23-33

Listing 23-34

Listing 23-35

Listing 23-36

Listing 23-37

Listing 23-38

6
7
8

->end()
->end()

;

As well as fixing this, fixXmlConfig() ensures that single XML elements are still turned into an array.
So you may have:

1
2

<connection>default</connection>
<connection>extra</connection>

and sometimes only:

1 <connection>default</connection>

By default connection would be an array in the first case and a string in the second making it difficult
to validate. You can ensure it is always an array with fixXmlConfig().

You can further control the normalization process if you need to. For example, you may want to allow a
string to be set and used as a particular key or several keys to be set explicitly. So that, if everything apart
from name is optional in this config:

1
2
3
4
5
6

connection:
name: my_mysql_connection
host: localhost
driver: mysql
username: user
password: pass

you can allow the following as well:

1 connection: my_mysql_connection

By changing a string value into an associative array with name as the key:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$rootNode
->children()

->arrayNode('connection')
->beforeNormalization()

->ifString()
->then(function ($v) { return array('name' => $v); })

->end()
->children()

->scalarNode('name')->isRequired()
// ...

->end()
->end()

->end()
;

Validation Rules

More advanced validation rules can be provided using the ExprBuilder10. This builder implements a
fluent interface for a well-known control structure. The builder is used for adding advanced validation
rules to node definitions, like:

10. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/ExprBuilder.html

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 68

http://sensiolabs.com

Listing 23-39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->validate()

->ifNotInArray(array('mysql', 'sqlite', 'mssql'))
->thenInvalid('Invalid database driver %s')

->end()
->end()

->end()
->end()

->end()
;

A validation rule always has an "if" part. You can specify this part in the following ways:

• ifTrue()

• ifString()

• ifNull()

• ifEmpty() (since Symfony 3.2)
• ifArray()

• ifInArray()

• ifNotInArray()

• always()

A validation rule also requires a "then" part:

• then()

• thenEmptyArray()

• thenInvalid()

• thenUnset()

Usually, "then" is a closure. Its return value will be used as a new value for the node, instead of the node's
original value.

Processing Configuration Values

The Processor11 uses the tree as it was built using the TreeBuilder12 to process multiple arrays of
configuration values that should be merged. If any value is not of the expected type, is mandatory and
yet undefined, or could not be validated in some other way, an exception will be thrown. Otherwise the
result is a clean array of configuration values:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Symfony\Component\Yaml\Yaml;
use Symfony\Component\Config\Definition\Processor;
use Acme\DatabaseConfiguration;

$config = Yaml::parse(
file_get_contents(__DIR__.'/src/Matthias/config/config.yaml')

);
$extraConfig = Yaml::parse(

file_get_contents(__DIR__.'/src/Matthias/config/config_extra.yaml')
);

$configs = array($config, $extraConfig);

$processor = new Processor();

11. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Processor.html

12. http://api.symfony.com/4.0/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 69

http://sensiolabs.com

15
16
17
18
19

$databaseConfiguration = new DatabaseConfiguration();
$processedConfiguration = $processor->processConfiguration(

$databaseConfiguration,
$configs

);

PDF brought to you by

generated on April 25, 2018

Chapter 23: Defining and Processing Configuration Values | 70

http://sensiolabs.com

Listing 24-1

Chapter 24

Loading Resources

The IniFileLoader parses the file contents using the parse_ini_file1 function. Therefore,
you can only set parameters to string values. To set parameters to other data types (e.g. boolean,
integer, etc), the other loaders are recommended.

Locating Resources
Loading the configuration normally starts with a search for resources, mostly files. This can be done with
the FileLocator2:

1
2
3
4
5
6

use Symfony\Component\Config\FileLocator;

$configDirectories = array(__DIR__.'/config');

$fileLocator = new FileLocator($configDirectories);
$yamlUserFiles = $fileLocator->locate('users.yaml', null, false);

The locator receives a collection of locations where it should look for files. The first argument of
locate() is the name of the file to look for. The second argument may be the current path and when
supplied, the locator will look in this directory first. The third argument indicates whether or not the
locator should return the first file it has found or an array containing all matches.

Resource Loaders
For each type of resource (YAML, XML, annotation, etc.) a loader must be defined. Each loader should
implement LoaderInterface3 or extend the abstract FileLoader4 class, which allows for recursively
importing other resources:

1. https://secure.php.net/manual/en/function.parse-ini-file.php

2. http://api.symfony.com/4.0/Symfony/Component/Config/FileLocator.html

3. http://api.symfony.com/4.0/Symfony/Component/Config/Loader/LoaderInterface.html

4. http://api.symfony.com/4.0/Symfony/Component/Config/Loader/FileLoader.html

PDF brought to you by

generated on April 25, 2018

Chapter 24: Loading Resources | 71

http://sensiolabs.com

Listing 24-2

Listing 24-3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

use Symfony\Component\Config\Loader\FileLoader;
use Symfony\Component\Yaml\Yaml;

class YamlUserLoader extends FileLoader
{

public function load($resource, $type = null)
{

$configValues = Yaml::parse(file_get_contents($resource));

// ... handle the config values

// maybe import some other resource:

// $this->import('extra_users.yaml');
}

public function supports($resource, $type = null)
{

return is_string($resource) && 'yaml' === pathinfo(
$resource,
PATHINFO_EXTENSION

);
}

}

Finding the Right Loader

The LoaderResolver5 receives as its first constructor argument a collection of loaders. When a
resource (for instance an XML file) should be loaded, it loops through this collection of loaders and
returns the loader which supports this particular resource type.

The DelegatingLoader6 makes use of the LoaderResolver7. When it is asked to load a resource, it
delegates this question to the LoaderResolver8. In case the resolver has found a suitable loader, this
loader will be asked to load the resource:

1
2
3
4
5
6
7
8
9

use Symfony\Component\Config\Loader\LoaderResolver;
use Symfony\Component\Config\Loader\DelegatingLoader;

$loaderResolver = new LoaderResolver(array(new YamlUserLoader($fileLocator)));
$delegatingLoader = new DelegatingLoader($loaderResolver);

// YamlUserLoader is used to load this resource because it supports
// files with the '.yaml' extension
$delegatingLoader->load(__DIR__.'/users.yaml');

5. http://api.symfony.com/4.0/Symfony/Component/Config/Loader/LoaderResolver.html

6. http://api.symfony.com/4.0/Symfony/Component/Config/Loader/DelegatingLoader.html

7. http://api.symfony.com/4.0/Symfony/Component/Config/Loader/LoaderResolver.html

8. http://api.symfony.com/4.0/Symfony/Component/Config/Loader/LoaderResolver.html

PDF brought to you by

generated on April 25, 2018

Chapter 24: Loading Resources | 72

http://sensiolabs.com

	The Components Book Version: 4.0 generated on April 25, 2018
	

	Contents at a Glance
	How to Install and Use the Symfony Components
	Using the Finder Component
	Now what?

	The Asset Component
	Installation
	Usage
	Asset Packages
	Versioned Assets
	Custom Version Strategies

	Grouped Assets
	Request Context Aware Assets

	Absolute Assets and CDNs
	Request Context Aware Assets

	Named Packages

	Learn more

	The BrowserKit Component
	Installation
	Basic Usage
	Creating a Client
	Making Requests
	Clicking Links
	Submitting Forms

	Cookies
	Retrieving Cookies
	Looping Through Cookies
	Setting Cookies

	History
	Learn more

	The Cache Component
	Installation
	Cache (PSR-6) Versus Simple Cache (PSR-16)
	Simple Caching (PSR-16)
	Available Simple Cache (PSR-16) Classes

	More Advanced Caching (PSR-6)
	Basic Usage (PSR-6)
	Advanced Usage (PSR-6)

	Cache Invalidation
	Using Cache Tags
	Tag Aware Adapters

	Using Cache Expiration

	Cache Items
	Cache Item Keys and Values
	Creating Cache Items
	Cache Item Expiration

	Cache Item Hits and Misses

	Cache Pools and Supported Adapters
	Creating Cache Pools
	Looking for Cache Items
	Saving Cache Items
	Removing Cache Items
	Pruning Cache Items

	APCu Cache Adapter
	Array Cache Adapter
	Chain Cache Adapter
	Doctrine Cache Adapter
	Filesystem Cache Adapter
	Memcached Cache Adapter
	Configure the Connection
	Configure the Options
	Available Options

	PDO & Doctrine DBAL Cache Adapter
	Php Array Cache Adapter
	Php Files Cache Adapter
	Proxy Cache Adapter
	Redis Cache Adapter
	Configure the Connection
	Configure the Options
	Available Options

	Adapters For Interoperability between PSR-6 and PSR-16 Cache
	Using a PSR-16 Cache Object as a PSR-6 Cache
	Using a PSR-6 Cache Object as a PSR-16 Cache

	The ClassLoader Component
	The Config Component
	Installation
	Learn More

	Caching based on Resources
	Defining and Processing Configuration Values
	Validating Configuration Values
	Defining a Hierarchy of Configuration Values Using the TreeBuilder
	Adding Node Definitions to the Tree
	Variable Nodes
	Node Type
	Numeric Node Constraints
	Enum Nodes
	Array Nodes
	Array Node Options

	Default and Required Values
	Deprecating the Option
	Documenting the Option
	Optional Sections
	Merging Options
	Appending Sections
	Normalization
	Validation Rules
	Processing Configuration Values

	Loading Resources
	Locating Resources
	Resource Loaders
	Finding the Right Loader

